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Contributions

• a simple and effective method for predicting covariance

matrices of financial returns

• a new method for evaluating a covariance predictor over

changing market conditions

• extensive empirical study on several large data sets

• open-source implementation in Python:

https://github.com/cvxgrp/cov_pred_finance
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Covariance prediction in finance



Financial returns

• rt ∈ Rn is the vector of n financial asset returns over period t

• t = 1, . . . ,T are the time periods

• could be days, weeks, months, etc.

• (rt)i is the return of asset i over period t

• assets could be bonds, stocks, factors, etc.
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Gaussian model

model: rt ∼ N (0,Σt)

• can demean return data if needed

• for most daily, weekly, or monthly return data

Σt = Ertr
T
t − (Ert) (Ert)

T ≈ Ertr
T
t

objective: find estimate Σ̂t of Σt , based on r1, . . . , rt−1
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Rolling window (RW) covariance predictor

Σ̂t = αt

t−1∑
τ=t−M

rτ r
T
τ , t = 2, 3, . . . ,

• αt = 1/min{t − 1,M} is the normalizing constant

• M is the RW memory
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Exponentially weighted moving average (EWMA) predictor

Σ̂t = αt

t−1∑
τ=1

βt−1−τ rτ r
T
τ , t = 2, 3, . . .

• αt =
(∑t−1

τ=1 β
t−1−τ

)−1
= 1−β

1−βt−1 is the normalizing constant

• β ∈ (0, 1) is the forgetting factor, often expressed in terms of

the half-life H = − log 2/ log β
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Some more complex predictors

• generalized autoregressive conditional heteroskedasticity
(GARCH)

– introduced in the 1980s [Bollerslev, 1986]

– models univariate volatility

– Nobel memorial prize awarded for related work [Engle, 1982]

• MGARCH: multivariate extension of GARCH

• currently considered state-of-the-art for volatility and

covariance prediction

• MGARCH requires solving non-convex optimization problems,

and involves many parameters difficult to estimate reliably
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Evaluating covariance predictors



Mean-squared error

• mean squared error (MSE) of predictions Σ̂1, . . . , Σ̂T

1

T

T∑
t=1

∥rtrTt − Σ̂t∥2F ,

(smaller values are better)

• commonly used in the literature [Patton, 2011]

• MSE best constant predictor is Σemp = 1
T

∑T
t=1 rtr

T
t
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Log-likelihood

• predictions Σ̂1, . . . , Σ̂T evaluated on average log-likelihood

1

2T

T∑
t=1

(
− n log(2π)− log det Σ̂t − rTt Σ̂−1

t rt
)

(larger values are better)

• closely related to (Gaussian) quasi-likelihood (QLIKE) [Patton,

2011; Patton and Sheppard, 2009; Laurent et al., 2013]

• log-likelihood best constant predictor is Σemp = 1
T

∑T
t=1 rtr

T
t
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Log-likelihood regret

• log-likelihood regret is the difference between the

log-likelihood of the best constant predictor and that of the

predictors Σ̂1, . . . , Σ̂T (smaller values are better)

• useful when we compute the regret over multiple periods, like

months or quarters

• the regret over multiple periods removes the effect of the

log-likelihood of the empirical covariance varying due to

changing market conditions
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Portfolio performance

• can evaluate covariance predictor by investment performance

• for example the minimum variance portfolio

minimize wT Σ̂tw

subject to 1Tw = 1, ∥w∥1 ≤ Lmax

wmin ≤ w ≤ wmax

with variable w (portfolio weight vector)

• other portfolios: risk-parity, max diversification

• performance metrics: realized return, volatility, Sharpe ratio,

max drawdown . . .

11



Volatility control with cash

to more easily compare portfolio performance across different

covariance predictors, we mix each portfolio with cash to attain

ex-ante volatility target σtar

1. start with portfolio weight wt

2. compute ex-ante volatility σt =
√

wT
t Σ̂twt

3. add a cash component to attain the new n + 1 weight vector[
θwt

(1− θ)

]
, θ =

σtar

σt
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Iterated methods



Iterated covariance predictors

1. form initial estimate Σ̂
(1)
t of Σt

2. form “whitened” returns

r̃t =
(
Σ̂
(1)
t

)−1/2
rt , t = 1, . . . ,T

3. form estimate Σ̂
(2)
t of covariance of r̃t

4. final estimate

Σ̂t =
(
Σ̂
(1)
t

)1/2
Σ̂
(2)
t

(
Σ̂
(1)
t

)1/2
• variation: let Σ̂

(2)
t be correlation matrix of r̃t [Engle, 2002]

• can iterate [Barratt and Boyd, 2022]
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Iterated EWMA (IEWMA) predictor

1. Σ
(1)
t is diagonal matrix of variances of rt

2. form
(
Σ̂
(1)
t

)
ii
as EWMA of (rt)

2
i using half-life Hvol

3. volatility adjusted returns

r̃t =
(
Σ̂
(1)
t

)−1/2
rt , t = 1, . . . ,T

4. form Σ̂
(2)
t as EWMA covariance of r̃t using half-life Hcor

• two parameters: Hvol and Hcor

• proposed in [Engle, 2002]
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Our method



Dynamically weighted prediction combiner

1. start with K covariance predictors Σ̂
(k)
t , k = 1, . . . ,K

2. Cholesky factorizations of associated precision matrices(
Σ̂
(k)
t

)−1
= L̂

(k)
t (L̂

(k)
t )T , k = 1, . . . ,K

3. create convex combination

L̂t =
K∑

k=1

πk L̂
(k)
t ,

where πk ≥ 0 and
∑K

k=1 πk = 1

4. recover covariance predictor as Σ̂t =
(
L̂t L̂

T
t

)−1
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Choosing the weights via convex optimization

• choose weights π at time t to maximize log-likelihood over

past N time-steps

maximize
∑N

j=1

(∑n
i=1 log L̂t−j ,ii − (1/2)∥L̂Tt−j rt−j∥22

)
subject to L̂τ =

∑K
j=1 πj L̂

(j)
τ , τ = t − 1, . . . , t − N

π ≥ 0, 1Tπ = 1,

• convex problem that can be solved quickly and reliably by

many methods
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Combined multiple iterated EWMA (CM-IEWMA)

1. choose K half-life pairs Hvol
k and Hcor

k , k = 1, . . . ,K

2. form the K IEWMA predictors Σ̂
(k)
t for these half-life pairs

3. combine the IEWMAs using the dynamically weighted

prediction combiner to get the prediction Σ̂t =
(
L̂t L̂

T
t

)−1

• parameters: half-life pairs and lookback N
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Empirical study



Data set and experimental setup

• data: n = 49 daily industry portfolio returns 1970–2023,

T = 13,496 trading days

• compare six covariance predictors

– RW with a 500-day window

– EWMA with 250-day half-life

– IEWMA with half-lives Hvol/Hcor of 125/250 (in days)

– MGARCH with parameters re-estimated annually

– CM-IEWMA with K = 5 predictors with half-lives (in days):

Hvol 21 63 125 250 500

Hcor 63 125 250 500 1000

• results on other data sets like stocks and factors are

qualitatively similar
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Mean-squared error

Predictor Average/10−4 Std. Dev./10−3 Max/10−2

RW 7.6 4.0 3.9

EWMA 7.5 4.0 3.9

IEWMA 7.4 3.9 3.9

MGARCH 6.8 3.6 3.8

CM-IEWMA 6.9 3.6 3.8

• metrics on quarterly MSE, over 212 quarters

• CM-IEWMA and MGARCH perform best
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Log-likelihood regret

Predictor Average Std. dev. Max

RW 20.4 6.9 72.8

EWMA 19.4 6.2 70.1

IEWMA 18.2 3.6 41.4

MGARCH 17.9 3.0 32.8

CM-IEWMA 16.9 2.4 28.4

• metrics on quarterly regret

• CM-IEWMA performs best
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Log-likelihood regret continued

• empirical CDF of quarterly regret (higher is better)
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Minimum variance portfolio performance metrics

Predictor Return Risk Sharpe

RW 3.1% 5.8% 0.5

EWMA 3.1% 5.4% 0.6

IEWMA 3.3% 5.5% 0.6

MGARCH 4.3% 6.1% 0.7

CM-IEWMA 3.5% 5.3% 0.7

• minimum variance portfolios cash-adjusted to 5% risk target

• similar performance across predictors

• CM-IEWMA estimates risk better than the other predictors
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CM-IEWMA component weights π

• average weight πi , i = 1, . . . , 5 on the five predictors each year

• substantial weight is put on the slower (longer half-life)

IEWMAs most years

• during and following volatile periods we see a significant

increase in weight on the faster IEWMAs
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Extensions and variations



Some practical extensions and variations

• realized covariance

– uses intraperiod returns

• large universes

– when n is larger than 100 or so

• smoothing

– penalize variation in covariance estimate
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Realized covariance

• rt ∈ Rn×m return matrix at time t, with columns that are m

intraperiod return vectors

• Ct = rtr
T
t realized covariance at time t

• realized EWMA (REWMA):

Σ̂t = αt

t−1∑
τ=1

βt−1−τCτ , t = 2, 3, . . . ,

• CM-REWMA combines REWMAs with different half-lives
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Realized covariance empirical results

• n = 39 stocks and m = 77 intraperiod returns, January 2

2004 to December 30 2016

• CM-IEWMA gives improvement here too
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Large universes

• in practice, the number of assets n can be very large

• we describe two closely related methods for large universes

– traditional factor model

– fitting a factor model to a (given) covariance matrix

• computational cost of portfolio optimization reduced from

O(n3) to O(nk2) when using a k-factor model [Boyd and

Vandenberghe, 2004]
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Traditional factor model

• model: rt = Ft ft + zt , t = 1, 2, . . . ,

– Ft ∈ Rn×k factor loadings

– ft ∈ Rk factor returns

– zt ∈ Rn idiosyncratic return

• we end up with covariance of low-rank plus diagonal form

Σt = FtΣ
f
tF

T
t + Et

– Σf
t factor return covariance

– Et diagonal matrix of idiosyncratic variances

• never have to store n × n covariance
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Fitting a factor model to a covariance matrix

• given covariance Σ

• find one in factor form, Σ̂ = FFT + E , such that the

Kullback-Leibler divergence between N (0,Σ) and N (0, Σ̂),

K(Σ, Σ̂) =
1

2

(
log

det Σ̂

detΣ
− n + Tr Σ̂−1Σ

)

is minimized

• equivalent to maximizing the expected log-likelihood of

r ∼ N(0,Σ) under the model N (0, Σ̂)

• can be solved via the expectation maximization algorithm

(suggested and derived by Emmanuel Candès)
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Large universes: empirical setup

• 238 US stocks over 5787 trading days

• traditional factor model

– create factor model using PCA on two years of data, refitted

annually

– we use k factors and use the CM-IEWMA with half-lives (in

days) Hvol/Hcor of ⌈k/2⌉/k , k/3k , and 3k/6k, to compute the

factor covariance

• fitting factor model to covariance

– use CM-IEWMA directly with half-lives (in days) Hvol/Hcor of

63/125, 125/250, 250/500, and 500/1000

– approximate CM-IEWMA predictor using factor model
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Large universes: empirical results

traditional factor model fitting factor model to covariance
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Smooth covariance predictions

• given predictions Σ̂t , t = 1, 2, . . .,

• let Σ̂sm
t be the EWMA of Σ̂t

– equivalent to minimizing∥∥∥Σ̂sm
t − Σ̂t

∥∥∥2
F
+ λ

∥∥∥Σ̂sm
t − Σ̂sm

t−1

∥∥∥2
F
,

where λ is a smoothing parameter

– yields smooth covariance predictions

• with regularizer λ∥Σ̂sm
t − Σ̂sm

t−1∥F , we obtain piecewise

constant predictions

• smoothing can lead to reduced trading and improved portfolio

performance
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Smooth covariance predictions empirical results

• minimum variance portfolios on five Fama-French factor

returns

• portfolio weights for smooth and piecewise constant

covariances

smooth piecewise constant
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Conclusions

• introduced a covariance predictor for financial returns

• relies on solving a small convex optimization problem

• requires little or no tuning or fitting

• interpretable, lightweight, and practically effective

• outperforms popular EWMA and is comparable to MGARCH
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Try it out!

from cvx.covariance.combination import from_ewmas

halflife_pairs = [(10, 21), (21, 63), (63, 125)]

combinator = from_ewmas(returns, halflife_pairs)

covariances = {}

for predictor in combinator.solve(window=10):

covariances[predictor.time] = predictor.covariance

https://github.com/cvxgrp/cov_pred_finance
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Thank you!

Questions?
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