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Covariance prediction in finance



Financial returns (vector time-series)

• rt ∈ Rn is the vector of n financial asset returns over period t

• t = 1, . . . ,T are the time periods

• could be days, weeks, months, etc.

• (rt)i is the return of asset i over period t

• assets could be bonds, stocks, factors, etc.
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Financial covariance

• model rt ∼ N (0,Σt)

• Σt is well approximated by ErtrTt , the second moment

• common for most daily, weekly, or monthly return data

• objective: given r1, . . . , rt−1, estimate covariance Σt

• denote Σ̂t as the prediction for Σt
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Evaluating covariance predictors

• predictions Σ̂1, . . . , Σ̂T evaluated on average log-likelihood

1

2T

T∑
t=1

(
− n log(2π)− log det Σ̂t − rTt Σ̂−1

t rt
)

(larger values are better)

• best constant predictor is Σemp = 1
T

∑T
t=1 rtr

T
t

• the log-likelihood regret is the difference between the

log-likelihood of the best constant predictor and that of the

predictors Σ̂1, . . . , Σ̂T (smaller values are better)

• covariance predictors can also be evaluated by the investment

performance of portfolio construction methods
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Rolling window (RW) covariance predictor

• RW:

Σ̂t = αt

t−1∑
τ=t−M

rτ r
T
τ , t = 2, 3, . . . ,

• αt = 1/min{t − 1,M} is a normalizing constant

• M is the RW memory
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Exponentially weighted moving average (EWMA) predictor

• EWMA:

Σ̂t = αt

t−1∑
τ=1

βt−1−τ rτ r
T
τ , t = 2, 3, . . .

• αt =
(∑t−1

τ=1 β
t−1−τ

)−1
= 1−β

1−βt−1 is a normalizing constant

• β ∈ (0, 1) is the forgetting factor, often expressed in terms of

the half-life H = − log 2/ log β
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Some more complex predictors

• generalized autoregressive conditional heteroskedasticity
(GARCH)

– introduced in the 1980s [Bollerslev, 1986]

– models univariate volatility

– Nobel memorial prize awarded for related work [Engle, 1982]

• MGARCH: multivariate extension of GARCH

• currently considered state-of-the-art on volatility and

covariance prediction

• MGARCH requires solving non-convex optimization problems,

and involves many parameters difficult to estimate reliably
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Our method



Iterated covariance predictors

• form initial estimate Σ̂
(1)
t of Σt

• “whitened” returns

r̃t =
(
Σ̂
(1)
t

)−1/2
rt , t = 1, . . . ,T

• form estimate Σ̂
(2)
t of covariance of r̃t

• final estimate

Σ̂t =
(
Σ̂
(1)
t

)1/2
Σ̂
(2)
t

(
Σ̂
(1)
t

)1/2
• can iterate [Barratt and Boyd, 2022]

8



Iterated EWMA (IEWMA) predictor

• Σ
(1)
t is diagonal matrix of variances of rt

• form
(
Σ̂
(1)
t

)
ii
as EWMA of (rt)

2
i using half-life Hvol

• volatility adjusted returns

r̃t =
(
Σ̂
(1)
t

)−1/2
rt , t = 1, . . . ,T

• form Σ̂
(2)
t as EWMA covariance of r̃t using half-life Hcor

• two parameters: Hvol and Hcor
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Dynamically weighted prediction combiner

• start with K covariance predictors Σ̂
(k)
t , k = 1, . . . ,K

• Cholesky factorizations of the associated precision matrices(
Σ̂
(k)
t

)−1
= L̂

(k)
t (L̂

(k)
t )T , k = 1, . . . ,K

• create the convex combination

L̂t =
K∑

k=1

πk L̂
(k)
t ,

where πk ≥ 0 and
∑K

k=1 πk = 1

• recover covariance predictor as Σ̂t =
(
L̂t L̂

T
t

)−1
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Choosing the weights via convex optimization

• choose weights π at time t to maximize log-likelihood over

past N time-steps

maximize
∑N

j=1

(∑n
i=1 log L̂t−j ,ii − (1/2)∥L̂Tt−j rt−j∥22

)
subject to L̂τ =

∑K
j=1 πj L̂

(j)
τ , τ = t − 1, . . . , t − N

π ≥ 0, 1Tπ = 1,

• convex problem that can be solved quickly and reliably by

many methods
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A novel covariance predictor for financial returns:

Combined multiple iterated EWMA (CM-IEWMA)

• choose K half-life pairs Hvol
k and Hcor

k , k = 1, . . . ,K

• form the K IEWMA predictors Σ̂
(k)
t for these half-life pairs

• combine the IEWMAs using the dynamically weighted

prediction combiner to get the prediction Σ̂t =
(
L̂t L̂

T
t

)−1
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Empirical study



Data set and experimental setup

• we consider n = 49 daily industry portfolio returns during

1970–2023, for T = 13,496 trading days

• compare five covariance predictors

– RW with a 500-day window

– EWMA with 250-day half-life

– IEWMA with half-lives (in days) Hvol/Hcor of 125/250

– MGARCH with parameters re-estimated annually

– CM-IEMWA with K = 5 predictors with half-lives (in days):

Hvol 21 63 125 250 500

Hcor 63 125 250 500 1000
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Log-likelihood regret

Predictor Average Std. dev. Max

RW 20.4 6.9 72.8

EWMA 19.4 6.2 70.1

IEWMA 18.2 3.6 41.4

MGARCH 17.9 3.0 32.8

CM-IEWMA 16.9 2.4 28.4

• metrics on the average quarterly regret from 1970–2023

• CM-IEWMA has the lowest average regret, lowest standard

deviation, and lowest maximum regret
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Minimum variance portfolio performance metrics

Predictor Return Risk Sharpe

RW 3.1% 5.8% 0.5

EWMA 3.1% 5.4% 0.6

IEWMA 3.3% 5.5% 0.6

MGARCH 4.3% 6.1% 0.7

CM-IEWMA 3.5% 5.3% 0.7

• minimum variance portfolios cash-diluted to 5% risk target

• similar performance across predictors

• CM-IEWMA estimates risk better than the other predictors
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CM-IEWMA component weights π

• average weight πi , i = 1, . . . , 5 on the five predictors each year

• substantial weight is put on the slower (longer half-life)

IEWMAs most years

• during and following volatile periods we see a significant

increase in weight on the faster IEWMAs

• CM-IEWMA automatically adjusts to market conditions 16



Conclusions

• introduced a covariance predictor for financial returns

• relies on solving a small convex optimization problem

• requires little or no tuning or fitting

• interpretable, lightweight, and practically effective

• outperforms popular EWMA and is comparable to MGARCH
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Thank you!

Questions?
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Appendix



Extensions and variations

• large universes

– when n is larger than 100 or so

– factor models can reduce computational cost and improve

log-likelihood and portfolio performance

• smoothing

– penalize variation in covariance estimate

– can improve log-likelihood and portfolio performance

– significantly reduces trading

– can attain smoothly varying or piecewise constant covariance

predictors

• simulating returns

– our predictor can be used to simulate future returns

– can generate realistic portfolio scenarios and distributions on

metrics
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Traditional factor model

• model: rt = Ft ft + zt , t = 1, 2, . . . ,

– Ft ∈ Rn×k factor loadings

– ft ∈ Rk factor returns

– zt ∈ Rn idiosyncratic return

• factor returns constructed by several methods, like principal

component analysis (PCA), or by hand.

• end up with covariance of low-rank plus diagonal form

Σt = FtΣ
f
tF

T
t + Et

– Σf
t factor return covariance

– Et diagonal matrix of idiosyncratic variances
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Fitting a factor model to a covariance matrix

• given covariance Σ

• find one in factor form, Σ̂ = FFT + E , such that the

Kullback-Liebler divergence between N (0,Σ) and N (0, Σ̂),

K(Σ, Σ̂) =
1

2

(
log

det Σ̂

detΣ
− n + Tr Σ̂−1Σ

)
.

is minimized

• equivalent to maximizing the expected log-likelihood of r ∼ Σ

under the model N (0, Σ̂), and can be solved via the

expectation maximization algorithm

• results in iterative algorithm of matrix multiplications 1

1this method was suggested and derived by Emmanuel Candès
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Smooth covariance predictions

• given predictions Σ̂t , t = 1, 2 . . .,

• let Σ̂sm
t be the EWMA of Σ̂t

– equivalent to minimizing∥∥∥Σ̂sm
t − Σ̂t

∥∥∥2
F
+ λ

∥∥∥Σ̂sm
t − Σ̂sm

t−1

∥∥∥2
F
,

where λ is a smoothing parameter

– yields smooth covariance predictions

• with regularizer λ∥Σ̂sm
t − Σ̂sm

t−1∥F , we obtain a piecewise

constant prediction
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Simulating returns

• start with realized returns for periods 1, . . . , t − 1

• compute Σ̂t

• generate sample r simt from N (0, Σ̂t)

• find Σ̂t+1 from r1, . . . , rt−1, r
sim
t

• generate r simt+1 from N (0, Σ̂t+1)

• repeat

• generates realistic returns that can be used, for example, to

simulate different realizations of portfolio metrics
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