Convex Optimization in Quantitative Finance

Kasper Johansson University PhD Dissertation Defense Department of Electrical Engineering

Advisor: Stephen Boyd

December 11, 2024

PhD overview

research focus: convex optimization in quantitative finance

key areas of study:

- covariance prediction
- portfolio construction
- statistical arbitrage trading
- retirement funding
- hyperparameter learning
- portfolio construction with crypto assets
- all problems formulated and solved through convex optimization
 - yields global solution (and optimality certificate)
 - fast and reliable (no need to tune parameters)
 - easily specified using domain-specific languages like CVXPY

Papers

- K. Johansson, M. Ogut, M. Pelger, T. Schmelzer, S. Boyd. A simple method for predicting covariance matrices of financial returns. Foundations and Trends in Econometrics, 2023.
- S. Boyd, K. Johansson, R. Kahn, P. Schiele, T. Schmelzer. Markowitz portfolio construction at seventy. Journal of Portfolio Management, Harry Markowitz Special Issue, 2024.
- K. Johansson, T. Schmelzer, S. Boyd. Finding moving-band statistical arbitrages via convex-concave optimization. Optimization and Engineering, 2024.
- K. Johansson, T. Schmelzer, S. Boyd. A Markowitz approach to managing a dynamic basket of moving-band statistical arbitrages. Journal of Asset Management, under review.
- S. Boyd, K. Johansson, P. Schiele. Convex optimization in quantitative finance. *Working paper*.
- **K. Johansson**, S. Boyd. Simple and effective portfolio construction with crypto assets. *Working paper*.
- **K. Johansson**, S. Boyd. A simple model predictive control policy for retirement funding. Working paper.
- **K. Johansson**, S. Boyd. Learning a hyperparameter policy for a trading algorithm. *Working paper*.

Papers: Today's focus

- **K. Johansson**, M. Ogut, M. Pelger, T. Schmelzer, S. Boyd. A simple method for predicting covariance matrices of financial returns. *Foundations and Trends in Econometrics*, 2023.
- S. Boyd, K. Johansson, R. Kahn, P. Schiele, T. Schmelzer. Markowitz portfolio construction at seventy. *Journal of Portfolio Management, Harry Markowitz Special Issue*, 2024.
- K. Johansson, T. Schmelzer, S. Boyd. Finding moving-band statistical arbitrages via convex-concave optimization. Optimization and Engineering, 2024.
- K. Johansson, T. Schmelzer, S. Boyd. A Markowitz approach to managing a dynamic basket of moving-band statistical arbitrages. Journal of Asset Management, under review.
- S. Boyd, K. Johansson, P. Schiele. Convex optimization in quantitative finance. *Working paper*.
- **K. Johansson**, S. Boyd. Simple and effective portfolio construction with crypto assets. *Working paper*.
- **K. Johansson**, S. Boyd. A simple model predictive control policy for retirement funding. *Working paper*.
- K. Johansson, S. Boyd. Learning a hyperparameter policy for a trading algorithm. Working paper.

Predicting covariance matrices: Challenges & contributions

challenges

- ► financial applications require covariance predictors that react to changing market conditions
- trade-off between stability and reactivity

contributions

- a simple and effective method for predicting reactive covariance matrices of financial returns
- a new method for evaluating a covariance predictor over changing market conditions
- extensive empirical study on several large data sets
- open-source implementation in Python:

https://github.com/cvxgrp/cov_pred_finance

Financial returns

- ▶ $r_t \in \mathbf{R}^n$ is the vector of *n* financial asset returns over period *t*
- t = 1, ..., T are the time periods (days, weeks, months, etc.)
- $(r_t)_i$ is the return of asset *i* over period *t*
- assets could be bonds, stocks, factors, etc.

Gaussian model

model: $r_t \sim \mathcal{N}(0, \Sigma_t)$

- can demean return data if needed
- for most daily, weekly, or monthly return data

$$\Sigma_t = \mathbf{E} r_t r_t^T - (\mathbf{E} r_t) (\mathbf{E} r_t)^T \approx \mathbf{E} r_t r_t^T$$

objective: find estimate $\hat{\Sigma}_t$ of Σ_t , based on r_1, \ldots, r_{t-1}

Evaluating covariance predictors

▶ predictions $\hat{\Sigma}_1, \dots, \hat{\Sigma}_T$ evaluated on average log-likelihood

$$\frac{1}{2T}\sum_{t=1}^{T} \left(-n\log(2\pi) - \log\det\hat{\Sigma}_t - r_t^T\hat{\Sigma}_t^{-1}r_t\right)$$

(larger values are better)

- best constant predictor is $\Sigma^{emp} = \frac{1}{T} \sum_{t=1}^{T} r_t r_t^T$
- ▶ **log-likelihood regret** is the difference between the log-likelihood of the best constant predictor and that of the predictors $\hat{\Sigma}_1, \ldots, \hat{\Sigma}_T$ (smaller values are better)
- the regret over multiple periods removes the effect of the log-likelihood of the empirical covariance varying due to changing market conditions

Exponentially weighted moving average (EWMA) predictor

$$\hat{\Sigma}_{t} = \alpha_{t} \sum_{\tau=1}^{t-1} \beta^{t-1-\tau} r_{\tau} r_{\tau}^{T}, \quad t = 2, 3, \dots$$

•
$$\alpha_t = \left(\sum_{\tau=1}^{t-1} \beta^{t-1-\tau}\right)^{-1} = \frac{1-\beta}{1-\beta^{t-1}}$$
 is the normalizing constant

▶ $\beta \in (0, 1)$ is the forgetting factor, often expressed in terms of the half-life $H = -\log 2/\log \beta$

Iterated EWMA (IEWMA)

- 1. form initial diagonal estimate $\hat{\Sigma}_{t}^{(1)}$, with $(\hat{\Sigma}_{t}^{(1)})_{ii}$ as EWMA of $(r_{t})_{i}^{2}$ using half-life H^{vol}
- 2. compute volatility adjusted returns

$$\tilde{r}_t = \left(\hat{\Sigma}_t^{(1)}\right)^{-1/2} r_t, \quad t = 1, \dots, T$$

3. form $\hat{\Sigma}_t^{(2)}$ as EWMA covariance of \tilde{r}_t using half-life H^{cor}

4. final estimate

$$\hat{\Sigma}_{t} = \left(\hat{\Sigma}_{t}^{(1)}\right)^{1/2} \hat{\Sigma}_{t}^{(2)} \left(\hat{\Sigma}_{t}^{(1)}\right)^{1/2}$$

- closely related to iterated covariance predictors [Barratt and Boyd, 2022]
- variation: let $\hat{\Sigma}_t^{(2)}$ be correlation matrix of \tilde{r}_t [Engle, 2002]
- predictor parameters: H^{vol} and H^{cor}

IEWMA performance over time

- Iog-likelihood regret for a fast IEWMA and a slow IEWMA on 49 daily industry portfolios
- ▶ in volatile markets (2000, 2008, 2020) the fast IEWMA performs better (lower regret)
- in stable markets the slow IEWMA performs better

Our method

Dynamically weighted prediction combiner

- 1. start with *K* covariance predictors $\hat{\Sigma}_t^{(k)}$, k = 1, ..., K
- 2. compute Cholesky factorizations of associated precision matrices

$$\left(\hat{\Sigma}_{t}^{(k)}\right)^{-1} = \hat{L}_{t}^{(k)} \left(\hat{L}_{t}^{(k)}\right)^{T}, \quad k = 1, \dots, K$$

3. create convex combination

$$\hat{L}_t = \sum_{k=1}^K \pi_k \hat{L}_t^{(k)},$$

where $\pi_k \ge 0$ and $\sum_{k=1}^K \pi_k = 1$

4. recover covariance predictor as $\hat{\Sigma}_t = (\hat{L}_t \hat{L}_t^T)^{-1}$

Choosing the weights via convex optimization

• choose weight vector π at time t to maximize log-likelihood over past N time-steps

$$\begin{array}{ll} \text{maximize} & \sum_{j=1}^{N} \left(\sum_{i=1}^{n} \log \hat{L}_{t-j,ii} - (1/2) \| \hat{L}_{t-j}^{T} r_{t-j} \|_{2}^{2} \right) \\ \text{subject to} & \hat{L}_{\tau} = \sum_{j=1}^{K} \pi_{j} \hat{L}_{\tau}^{(j)}, \quad \tau = t-1, \dots, t-N, \\ & \pi \ge 0, \quad \mathbf{1}^{T} \pi = 1 \end{array}$$

convex optimization problem [Boyd and Vandenberghe, 2004]

Combined multiple iterated EWMA (CM-IEWMA)

- 1. choose *K* half-life pairs $(H_k^{\text{vol}}, H_k^{\text{cor}}), k = 1, \dots, K$
- 2. form the *K* IEWMA predictors $\hat{\Sigma}_{t}^{(k)}$ for these half-life pairs
- 3. combine the IEWMAs using the dynamically weighted prediction combiner to get the prediction $\hat{\Sigma}_t = (\hat{L}_t \hat{L}_t^T)^{-1}$

predictor parameters: half-life pairs and lookback horizon N

Data set and experimental setup

• data: n = 49 daily industry portfolio returns 1970–2023, T = 13,496 trading days

- compare five covariance predictors
 - rolling window (RW) with a 500-day window
 - EWMA with 250-day half-life
 - IEWMA with half-lives $H^{\text{vol}}/H^{\text{cor}}$ of 125/250 (in days)
 - MGARCH with parameters re-estimated annually
 - CM-IEWMA with K = 5 predictors with half-lives (in days):

H^{vol}	21	63	125	250	500
H^{cor}	63	125	250	500	1000

results on other data sets like stocks and factors are qualitatively similar

Log-likelihood regret

Predictor	Average	Std. dev.	Max.
RW	20.4	6.9	72.8
EWMA	19.4	6.2	70.1
IEWMA	18.2	3.6	41.4
MGARCH	17.9	3.0	32.8
CM-IEWMA	16.9	2.4	28.4

metrics on quarterly regret (over 212 quarters)

CM-IEWMA performs best

CM-IEWMA component weights π

- average weight π_i , i = 1, ..., 5 on the five IEWMAs each year
- substantial weight is put on slow IEWMAs most years
- during and following volatile periods we see significant weight increase on fast IEWMAs

Extension: Factor covariance model

$$\Sigma_t = F_t \Sigma_t^{\mathsf{f}} F_t^T + D_t$$

- $F_t \in \mathbf{R}^{n \times k}$ is matrix of factor loadings
- ▶ *k* is number of factors, typically with $k \ll n$
- Σ_t^{f} is $k \times k$ factor covariance matrix
- D_t is diagonal matrix of unexplained (idiosyncratic) variances
- a strong regularizer which can give better return covariance estimates
- factors constructed by many methods, like principal component analysis (PCA) or by hand

Benefits of factor covariance model

- average regret on a 238-asset universe from 2000–2023
- factors estimated by PCA every year using previous two years of data

Papers: Today's focus

- **K. Johansson**, M. Ogut, M. Pelger, T. Schmelzer, S. Boyd. A simple method for predicting covariance matrices of financial returns. *Foundations and Trends in Econometrics*, 2023.
- S. Boyd, K. Johansson, R. Kahn, P. Schiele, T. Schmelzer. Markowitz portfolio construction at seventy. *Journal of Portfolio Management, Harry Markowitz Special Issue*, 2024.
- K. Johansson, T. Schmelzer, S. Boyd. Finding moving-band statistical arbitrages via convex-concave optimization. Optimization and Engineering, 2024.
- K. Johansson, T. Schmelzer, S. Boyd. A Markowitz approach to managing a dynamic basket of moving-band statistical arbitrages. Journal of Asset Management, under review.
- S. Boyd, K. Johansson, P. Schiele. Convex optimization in quantitative finance. *Working paper*.
- **K. Johansson**, S. Boyd. Simple and effective portfolio construction with crypto assets. *Working paper*.
- K. Johansson, S. Boyd. A simple model predictive control policy for retirement funding. Working paper.
- K. Johansson, S. Boyd. Learning a hyperparameter policy for a trading algorithm. Working paper.

Markowitz portfolio construction: Challenges & contributions

challenges

- Markowitz portfolio construction balances risk and return through convex optimization
- the basic version can be sensitive to estimation errors, often producing impractical portfolios

contributions

- collect minimal set of constraints and extensions from prior work to address practical issues
 - constraints on leverage, turnover, etc. [Grinold & Kahn, 2000]
 - address uncertainty with robust optimization [Ben-Tal, El Ghaoui, & Nemirovski, 2009]
 - incorporate soft constraints in optimization problems [Bertsimas & Brown, 2011]
- novel method for how to prioritize constraints
- extension preserves convexity
- extensive empirical evaluation on historical data

Basic Markowitz optimization

maximize
$$\mu^T w$$

subject to $w^T \Sigma w \leq (\sigma^{\text{tar}})^2$, $\mathbf{1}^T w = 1$

- variable $w \in \mathbf{R}^n$ of portfolio weights
- ▶ $\mu \in \mathbf{R}^n$ and $\Sigma \in \mathbf{S}_{++}^n$ are asset return mean and covariance
- σ^{tar} is target (per period) volatility
- basic form goes back to [Markowitz, 1952]

```
w = cp.Variable(n)
objective = mu.T @ w
constraints = [cp.quad_form(w, Sigma) <= sigma**2, cp.sum(w) == 1]
prob = cp.Problem(cp.Maximize(objective), constraints)
prob.solve()</pre>
```

Critiques of Markowitz optimization

- sensitivity to data errors and estimation uncertainty
- risk symmetry
- maximizing expected utility versus mean-variance
- statistical assumptions: assumes Gaussian returns, and ignores higher moments
- greedy method, only looks one step ahead

 $\begin{array}{ll} \mbox{maximize} & \mu^T w \\ \mbox{subject to} & w^T \Sigma w \leq (\sigma^{\rm tar})^2, \quad \mathbf{1}^T w = 1 \end{array}$

- sensitivity to data errors and estimation uncertainty
- risk symmetry
- maximizing expected utility versus mean-variance
- statistical assumptions: assumes Gaussian returns, and ignores higher moments
- greedy method, only looks one step ahead

- we address the first issue of sensitivity to data errors and estimation uncertainty
- the other critiques seem less relevant in practice [Luxenberg and Boyd, 2023]

 $\begin{array}{ll} \text{maximize} & \mu^T w \\ \text{subject to} & w^T \Sigma w \leq (\sigma^{\text{tar}})^2, \quad \mathbf{1}^T w = 1 \end{array}$

Adding practical constraints and objective terms

- ▶ include cash holdings c, previous holdings w^{pre} , trades $z = w w^{\text{pre}}$
- account for (convex) holding costs ϕ^{hold} and trading costs ϕ^{trade}
- limit weights, cash, trades, turnover $T = ||z||_1$, and leverage $L = ||w||_1$

```
 \begin{array}{ll} \mbox{maximize} & \mu^T w - \gamma^{\mbox{hold}} \phi^{\mbox{hold}}(w,c) - \gamma^{\mbox{trade}} \phi^{\mbox{trade}}(z) \\ \mbox{subject to} & \mathbf{1}^T w + c = 1, \quad z = w - w^{\mbox{pre}}, \\ & w^{\mbox{min}} \leq w \leq w^{\mbox{max}}, \quad c^{\mbox{min}} \leq c \leq c^{\mbox{max}}, \quad L \leq L^{\mbox{tar}}, \\ & z^{\mbox{min}} \leq z \leq z^{\mbox{max}}, \quad T \leq T^{\mbox{tar}}, \\ & \|\Sigma^{1/2} w\|_2 \leq \sigma^{\mbox{tar}} \end{array}
```

Adding practical constraints and objective terms

- ▶ include cash holdings c, previous holdings w^{pre} , trades $z = w w^{\text{pre}}$
- account for (convex) holding costs φ^{hold} and trading costs φ^{trade}
- limit weights, cash, trades, turnover $T = ||z||_1$, and leverage $L = ||w||_1$

$$\begin{array}{ll} \mbox{maximize} & \mu^T w - \gamma^{\mbox{hold}} \phi^{\mbox{hold}}(w,c) - \gamma^{\mbox{trade}} \phi^{\mbox{trade}}(z) \\ \mbox{subject to} & \mathbf{1}^T w + c = 1, \quad z = w - w^{\mbox{pre}}, \\ & w^{\mbox{min}} \leq w \leq w^{\mbox{max}}, \quad c^{\mbox{min}} \leq c \leq c^{\mbox{max}}, \quad L \leq L^{\mbox{tar}} \\ & z^{\mbox{min}} \leq z \leq z^{\mbox{max}}, \quad T \leq T^{\mbox{tar}}, \\ & \|\Sigma^{1/2} w\|_2 \leq \sigma^{\mbox{tar}} \end{array}$$

remaining challenges (and solutions)

- \triangleright Σ is estimated in factor covariance form; estimating μ is difficult and typically proprietary
- optimization is sensitive to errors in μ and Σ (use robustification)
- constraints may lead to infeasibility or unnecessary trading (use soft constraints)

Computational benefits of factor model

- with factor model, cost of portfolio optimization reduced from O(n³) to O(nk²) flops [Boyd and Vandenberghe, 2004]
- easily exploited in modeling languages like CVXPY
- timings for Clarabel open source solver:

		solve time (s)			
assets n	factors k	factor model	full covariance		
100	10	0.002	0.040		
300	20	0.010	0.700		
1000	30	0.080	25.600		
3000	50	0.600	460.000		

Robustifying Markowitz

basic Markowitz optimization can be sensitive to estimation errors in μ , Σ

• replace mean return $\mu^T w$ with worst-case return

$$R^{\mathsf{wc}} = \min\{(\mu + \delta)^T w \mid |\delta| \le \rho\} = \mu^T w - \rho^T |w|$$

where $\rho \ge 0$ is vector of mean return uncertainties

• replace risk $w^T \Sigma w$ with worst-case risk

$$(\sigma^{\mathsf{wc}})^2 = \max\{w^T(\Sigma + \Delta)w \mid |\Delta_{ij}| \le \kappa (\Sigma_{ii}\Sigma_{jj})^{1/2}\}$$
$$= \sigma^2 + \kappa \left(\sum_{i=1}^n \Sigma_{ii}^{1/2} |w_i|\right)^2$$

where $\kappa \ge 0$ represents covariance uncertainty

easily handled by CVXPY

Softening constraints

- soft constraints allow limited violations of constraints, based on priority
- ▶ to soften a constraint $f \le f^{\max}$, replace it with a penalty term $\gamma(f f^{\max})_+$ in the objective
- ▶ in Markowitz risk, leverage, and turnover can be softened, giving three priority parameters

 $\gamma^{\mathsf{risk}}, \gamma^{\mathsf{lev}}, \gamma^{\mathsf{turn}}$

the softened problem reduces unnecessary trading and is always feasible

Softening constraints

- soft constraints allow limited violations of constraints, based on priority
- ▶ to soften a constraint $f \le f^{\max}$, replace it with a penalty term $\gamma(f f^{\max})_+$ in the objective
- in Markowitz risk, leverage, and turnover can be softened, giving three priority parameters

 $\gamma^{\mathsf{risk}}, \gamma^{\mathsf{lev}}, \gamma^{\mathsf{turn}}$

the softened problem reduces unnecessary trading and is always feasible

choosing priority parameters

- can be chosen or initialized based on Lagrange multipliers of hard constrained problem
- *e.g.*, as 80th percentile of recorded multipliers over a historical period
- fast solve time enables backtesting to fine-tune parameters

Data and experimental setup

- S&P 100 stocks, data gathered daily from 2000-01-04 to 2023-09-22
- exclude stocks without data for the full period (gives n = 74 assets)
- simulated but realistic mean predictions, and EWMA covariance
- priority parameters retuned each year based on the previous two years of data

▶ focus: relative performance comparison of methods, not real portfolio construction

Parameter tuning (in-sample)

- 0. initialize $\gamma^{\text{hold}} = \gamma^{\text{trade}} = 1$, and $\gamma^{\text{risk}}, \gamma^{\text{lev}}, \gamma^{\text{turn}}$ based on hard constraint Lagrange multipliers
- 1. cycle through parameters, increasing the parameter (+25%), one at a time
- 2. keep changes if all of the following hold:
 - the in-sample Sharpe ratio increases
 - the in-sample annualized turnover is no more than 100
 - the in-sample maximum leverage is no more than 2
 - the in-sample annualized volatility is no more than 15%

if not, decrease the parameter (-20%) and check if the metrics improve

3. repeat 1-2 until convergence

Tuning

- figures show typical effect of tuning on Sharpe ratio, volatility, and turnover
- in-sample: April 19, 2016 to March 19, 2018
- out-of-sample: March 20, 2018 to March 4, 2019
- Sharpe ratio increases from around 4.5 to 6.0, while other metrics stay within bounds

Portfolio performance

Metric	Basic	Robust	
Return	3.5%	38.1%	
Risk	14.4%	8.6%	
Sharpe	0.2	4.6	
Drawdown	80%	6%	

out-of-sample portfolio performance for basic Markowitz and robust Markowitz

Conclusions

- convex optimization shown to be effective in quantitative finance
- covariance prediction
 - introduced a simple and effective convex optimization-based predictor
 - requires minimal tuning, is interpretable, lightweight, and effective
 - outperforms popular benchmark models
- Markowitz portfolio construction
 - extended to include practical constraints (e.g., leverage, turnover, ...)
 - addressed estimation errors with robust optimization
 - leveraged soft constraints to reduce trading and ensure feasibility
- thesis also considers: statistical arbitrage trading, retirement funding, hyperparameter tuning, and crypto assets

Stephen Boyd

Stephen Boyd

> my PhD committee: Mert Pilanci, Markus Pelger, Sanjay Lall, Ron Kahn

- Stephen Boyd
- > my PhD committee: Mert Pilanci, Markus Pelger, Sanjay Lall, Ron Kahn
- collaborators: Giray Ogut, Philippe Schiele, Thomas Schmelzer

- Stephen Boyd
- my PhD committee: Mert Pilanci, Markus Pelger, Sanjay Lall, Ron Kahn
- collaborators: Giray Ogut, Philippe Schiele, Thomas Schmelzer
- cvxgrp

- Stephen Boyd
- my PhD committee: Mert Pilanci, Markus Pelger, Sanjay Lall, Ron Kahn
- collaborators: Giray Ogut, Philippe Schiele, Thomas Schmelzer
- cvxgrp
- many friends: Daniel, Max, Giray, Pelle, Otto, Gustaf, Wille, Jacob, David, Gustav, Axel, Johan, Filip, Vincent, Jesper, Michael, Jonatan, and more

- Stephen Boyd
- my PhD committee: Mert Pilanci, Markus Pelger, Sanjay Lall, Ron Kahn
- collaborators: Giray Ogut, Philippe Schiele, Thomas Schmelzer
- cvxgrp
- many friends: Daniel, Max, Giray, Pelle, Otto, Gustaf, Wille, Jacob, David, Gustav, Axel, Johan, Filip, Vincent, Jesper, Michael, Jonatan, and more
- 🕨 Maya P 🎔

- Stephen Boyd
- my PhD committee: Mert Pilanci, Markus Pelger, Sanjay Lall, Ron Kahn
- collaborators: Giray Ogut, Philippe Schiele, Thomas Schmelzer
- cvxgrp
- many friends: Daniel, Max, Giray, Pelle, Otto, Gustaf, Wille, Jacob, David, Gustav, Axel, Johan, Filip, Vincent, Jesper, Michael, Jonatan, and more
- 🕨 Maya P 🎔
- mom and dad

- Stephen Boyd
- my PhD committee: Mert Pilanci, Markus Pelger, Sanjay Lall, Ron Kahn
- collaborators: Giray Ogut, Philippe Schiele, Thomas Schmelzer
- cvxgrp
- many friends: Daniel, Max, Giray, Pelle, Otto, Gustaf, Wille, Jacob, David, Gustav, Axel, Johan, Filip, Vincent, Jesper, Michael, Jonatan, and more
- 🕨 Maya P 🎔
- mom and dad
- grandma and grandpa

- Stephen Boyd
- my PhD committee: Mert Pilanci, Markus Pelger, Sanjay Lall, Ron Kahn
- collaborators: Giray Ogut, Philippe Schiele, Thomas Schmelzer
- cvxgrp
- many friends: Daniel, Max, Giray, Pelle, Otto, Gustaf, Wille, Jacob, David, Gustav, Axel, Johan, Filip, Vincent, Jesper, Michael, Jonatan, and more
- 🕨 Maya P 🎔
- mom and dad
- grandma and grandpa
- finally, my best friend and little brother

Thank you!

Appendix

Covariance prediction: Some practical extensions and variations

- realized covariance
 - uses intraperiod returns
- large universes
 - when *n* is larger than 100 or so
- smoothing
 - penalize variation in covariance estimate

Realized covariance

- ▶ $r_t \in \mathbf{R}^{n \times m}$ return matrix at time *t*, with columns that are *m* intraperiod return vectors
- $C_t = r_t r_t^T$ realized covariance at time t
- realized EWMA (REWMA):

$$\hat{\Sigma}_t = \alpha_t \sum_{\tau=1}^{t-1} \beta^{t-1-\tau} C_{\tau}, \quad t = 2, 3, \dots,$$

CM-REWMA combines REWMAs with different half-lives

Realized covariance empirical results

- > n = 39 stocks and m = 77 intraperiod returns, January 2 2004 to December 30 2016
- CM-IEWMA gives improvement here too

Large universes

- ▶ in practice, the number of assets *n* can be very large
- we describe two closely related methods for large universes
 - traditional factor model
 - fitting a factor model to a (given) covariance matrix
- computational cost of portfolio optimization reduced from O(n³) to O(nk²) when using a k-factor model [Boyd and Vandenberghe, 2004]

Traditional factor model

• model:
$$r_t = F_t f_t + z_t$$
, $t = 1, 2, ...,$

- $F_t \in \mathbf{R}^{n \times k}$ factor loadings
- $-f_t \in \mathbf{R}^k$ factor returns
- $z_t \in \mathbf{R}^n$ idiosyncratic return
- we end up with covariance of low-rank plus diagonal form

$$\Sigma_t = F_t \Sigma_t^{\rm f} F_t^T + E_t$$

- $-\Sigma_t^{\rm f}$ factor return covariance
- E_t diagonal matrix of idiosyncratic variances
- never have to store $n \times n$ covariance

Fitting a factor model to a covariance matrix

• given covariance Σ

Find one in factor form, Σ̂ = FF^T + E, such that the Kullback-Leibler divergence between N(0, Σ) and N(0, Σ̂),

$$\mathcal{K}(\Sigma, \hat{\Sigma}) = \frac{1}{2} \left(\log \frac{\det \hat{\Sigma}}{\det \Sigma} - n + \operatorname{Tr} \hat{\Sigma}^{-1} \Sigma \right)$$

is minimized

- equivalent to maximizing the expected log-likelihood of $r \sim N(0, \Sigma)$ under the model $\mathcal{N}(0, \hat{\Sigma})$
- can be solved via the expectation maximization algorithm (suggested and derived by Emmanuel Candès)

Large universes: empirical setup

- 238 US stocks over 5787 trading days
- traditional factor model
 - create factor model using PCA on two years of data, refitted annually
 - we use k factors and use the CM-IEWMA with half-lives (in days) $H^{\text{vol}}/H^{\text{cor}}$ of $\lfloor k/2 \rfloor/k, k/3k$, and 3k/6k, to compute the factor covariance
- fitting factor model to covariance
 - use CM-IEWMA directly with half-lives (in days) H^{vol}/H^{cor} of 63/125, 125/250, 250/500, and 500/1000
 - approximate CM-IEWMA predictor using factor model

Large universes: empirical results

Smooth covariance predictions

- given predictions $\hat{\Sigma}_t$, t = 1, 2, ...,
- let $\hat{\Sigma}_t^{sm}$ be the EWMA of $\hat{\Sigma}_t$
 - equivalent to minimizing

$$\left\|\hat{\Sigma}_{t}^{\mathsf{sm}}-\hat{\Sigma}_{t}\right\|_{F}^{2}+\lambda\left\|\hat{\Sigma}_{t}^{\mathsf{sm}}-\hat{\Sigma}_{t-1}^{\mathsf{sm}}\right\|_{F}^{2},$$

where λ is a smoothing parameter

- yields smooth covariance predictions
- with regularizer $\lambda \|\hat{\Sigma}_t^{sm} \hat{\Sigma}_{t-1}^{sm}\|_F$, we obtain piecewise constant predictions
- smoothing can lead to reduced trading and improved portfolio performance

Smooth covariance predictions empirical results

- minimum variance portfolios on five Fama-French factor returns
- portfolio weights for smooth and piecewise constant covariances

Try it out!

https://github.com/cvxgrp/cov_pred_finance

Taming Markowitz

	Return	Volatility	Sharpe	Turnover	Leverage	Drawdown
Equal weight	14.1%	20.1%	0.66	1.2	1.0	50.5%
Basic Markowitz	3.7%	14.5%	0.19	1145.2	9.3	78.9%
Weight-limited	20.2%	11.5%	1.69	638.4	5.1	30.0%
Leverage-limited	22.9%	11.9%	1.86	383.6	1.6	14.9%
Turnover-limited	19.0%	11.8%	1.54	26.1	6.5	25.0%
Robust	15.7%	9.0%	1.64	458.8	3.2	24.7%
Markowitz++	38.6%	8.7%	4.32	28.0	1.8	7.0%
Tuned Markowitz++	41.8%	8.8%	4.65	38.6	1.6	6.4%

portfolio performance for various modifications to basic Markowitz optimization

Markowitz++ refers to our proposed extension

Annual returns

Annual volatilities

Annual Sharpes

Solve times

