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PhD overview

▶ research focus: convex optimization in quantitative finance
▶ key areas of study:

– covariance prediction
– portfolio construction
– statistical arbitrage trading
– retirement funding
– hyperparameter learning
– portfolio construction with crypto assets

▶ all problems formulated and solved through convex optimization
– yields global solution (and optimality certificate)
– fast and reliable (no need to tune parameters)
– easily specified using domain-specific languages like CVXPY
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Predicting covariance matrices: Challenges & contributions

challenges
▶ financial applications require covariance predictors that react to changing market conditions
▶ trade-off between stability and reactivity

contributions
▶ a simple and effective method for predicting reactive covariance matrices of financial returns
▶ a new method for evaluating a covariance predictor over changing market conditions
▶ extensive empirical study on several large data sets
▶ open-source implementation in Python:

https://github.com/cvxgrp/cov_pred_finance
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Financial returns

▶ rt ∈ Rn is the vector of n financial asset returns over period t
▶ t = 1, . . . , T are the time periods (days, weeks, months, etc.)
▶ (rt)i is the return of asset i over period t
▶ assets could be bonds, stocks, factors, etc.
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Gaussian model

model: rt ∼ N(0, Σt)
▶ can demean return data if needed
▶ for most daily, weekly, or monthly return data

Σt = ErtrT
t − (Ert) (Ert)T ≈ ErtrT

t

objective: find estimate Σ̂t of Σt, based on r1, . . . , rt−1
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Evaluating covariance predictors

▶ predictions Σ̂1, . . . , Σ̂T evaluated on average log-likelihood

1
2T

T∑︁
t=1

(
− n log(2𝜋) − log det Σ̂t − rT

t Σ̂
−1
t rt

)
(larger values are better)

▶ best constant predictor is Σemp = 1
T
∑T

t=1 rtrT
t

▶ log-likelihood regret is the difference between the log-likelihood of the best constant
predictor and that of the predictors Σ̂1, . . . , Σ̂T (smaller values are better)

▶ the regret over multiple periods removes the effect of the log-likelihood of the empirical
covariance varying due to changing market conditions
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Exponentially weighted moving average (EWMA) predictor

Σ̂t = 𝛼t

t−1∑︁
𝜏=1

𝛽t−1−𝜏r𝜏rT
𝜏 , t = 2, 3, . . .

▶ 𝛼t =
(∑t−1

𝜏=1 𝛽
t−1−𝜏

)−1
=

1−𝛽
1−𝛽t−1 is the normalizing constant

▶ 𝛽 ∈ (0, 1) is the forgetting factor, often expressed in terms of the half-life H = − log 2/log 𝛽
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Iterated EWMA (IEWMA)

1. form initial diagonal estimate Σ̂
(1)
t , with

(
Σ̂
(1)
t

)
ii

as EWMA of (rt)2
i using half-life Hvol

2. compute volatility adjusted returns

r̃t =
(
Σ̂
(1)
t

)−1/2
rt, t = 1, . . . , T

3. form Σ̂
(2)
t as EWMA covariance of r̃t using half-life Hcor

4. final estimate
Σ̂t =

(
Σ̂
(1)
t

)1/2
Σ̂
(2)
t

(
Σ̂
(1)
t

)1/2

▶ closely related to iterated covariance predictors [Barratt and Boyd, 2022]
▶ variation: let Σ̂ (2)

t be correlation matrix of r̃t [Engle, 2002]
▶ predictor parameters: Hvol and Hcor

10



IEWMA performance over time

▶ log-likelihood regret for a fast IEWMA and a slow IEWMA on 49 daily industry portfolios
▶ in volatile markets (2000, 2008, 2020) the fast IEWMA performs better (lower regret)
▶ in stable markets the slow IEWMA performs better
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Our method
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Dynamically weighted prediction combiner

1. start with K covariance predictors Σ̂
(k)
t , k = 1, . . . ,K

2. compute Cholesky factorizations of associated precision matrices(
Σ̂
(k)
t

)−1
= L̂(k)

t

(
L̂(k)

t

)T
, k = 1, . . . ,K

3. create convex combination

L̂t =

K∑︁
k=1

𝜋kL̂(k)
t ,

where 𝜋k ≥ 0 and
∑K

k=1 𝜋k = 1

4. recover covariance predictor as Σ̂t =
(
L̂tL̂T

t

)−1
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Choosing the weights via convex optimization

▶ choose weight vector 𝜋 at time t to maximize log-likelihood over past N time-steps

maximize
∑N

j=1

( ∑n
i=1 log L̂t−j,ii − (1/2)∥L̂T

t−jrt−j∥2
2

)
subject to L̂𝜏 =

∑K
j=1 𝜋jL̂(j)

𝜏 , 𝜏 = t − 1, . . . , t − N,

𝜋 ≥ 0, 1T𝜋 = 1

▶ convex optimization problem [Boyd and Vandenberghe, 2004]
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Combined multiple iterated EWMA (CM-IEWMA)

1. choose K half-life pairs (Hvol
k ,Hcor

k ), k = 1, . . . ,K

2. form the K IEWMA predictors Σ̂
(k)
t for these half-life pairs

3. combine the IEWMAs using the dynamically weighted prediction combiner to get the
prediction Σ̂t =

(
L̂tL̂T

t

)−1

▶ predictor parameters: half-life pairs and lookback horizon N
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Data set and experimental setup

▶ data: n = 49 daily industry portfolio returns 1970–2023, T = 13,496 trading days
▶ compare five covariance predictors

– rolling window (RW) with a 500-day window
– EWMA with 250-day half-life
– IEWMA with half-lives Hvol/Hcor of 125/250 (in days)
– MGARCH with parameters re-estimated annually
– CM-IEWMA with K = 5 predictors with half-lives (in days):

Hvol 21 63 125 250 500
Hcor 63 125 250 500 1000

▶ results on other data sets like stocks and factors are qualitatively similar
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Log-likelihood regret

Predictor Average Std. dev. Max.

RW 20.4 6.9 72.8
EWMA 19.4 6.2 70.1
IEWMA 18.2 3.6 41.4
MGARCH 17.9 3.0 32.8
CM-IEWMA 16.9 2.4 28.4

▶ metrics on quarterly regret (over 212 quarters)
▶ CM-IEWMA performs best
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CM-IEWMA component weights 𝜋

▶ average weight 𝜋i, i = 1, . . . , 5 on the five IEWMAs each year
▶ substantial weight is put on slow IEWMAs most years
▶ during and following volatile periods we see significant weight increase on fast IEWMAs
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Extension: Factor covariance model

Σt = FtΣ
f
tF

T
t + Dt

▶ Ft ∈ Rn×k is matrix of factor loadings
▶ k is number of factors, typically with k ≪ n
▶ Σf

t is k × k factor covariance matrix
▶ Dt is diagonal matrix of unexplained (idiosyncratic) variances
▶ a strong regularizer which can give better return covariance estimates
▶ factors constructed by many methods, like principal component analysis (PCA) or by hand
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Benefits of factor covariance model

▶ average regret on a 238-asset universe from 2000–2023
▶ factors estimated by PCA every year using previous two years of data
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Markowitz portfolio construction: Challenges & contributions

challenges
▶ Markowitz portfolio construction balances risk and return through convex optimization
▶ the basic version can be sensitive to estimation errors, often producing impractical portfolios

contributions
▶ collect minimal set of constraints and extensions from prior work to address practical issues

– constraints on leverage, turnover, etc. [Grinold & Kahn, 2000]
– address uncertainty with robust optimization [Ben-Tal, El Ghaoui, & Nemirovski, 2009]
– incorporate soft constraints in optimization problems [Bertsimas & Brown, 2011]

▶ novel method for how to prioritize constraints
▶ extension preserves convexity
▶ extensive empirical evaluation on historical data

22



Basic Markowitz optimization

maximize 𝜇Tw
subject to wTΣw ≤ (𝜎tar)2, 1Tw = 1

▶ variable w ∈ Rn of portfolio weights
▶ 𝜇 ∈ Rn and Σ ∈ Sn

++ are asset return mean and covariance
▶ 𝜎tar is target (per period) volatility
▶ basic form goes back to [Markowitz, 1952]

w = cp.Variable(n)

objective = mu.T @ w

constraints = [cp.quad_form(w, Sigma) <= sigma**2, cp.sum(w) == 1]

prob = cp.Problem(cp.Maximize(objective), constraints)

prob.solve()
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Critiques of Markowitz optimization

▶ sensitivity to data errors and estimation uncertainty
▶ risk symmetry
▶ maximizing expected utility versus mean-variance
▶ statistical assumptions: assumes Gaussian returns, and ignores higher moments
▶ greedy method, only looks one step ahead

maximize 𝜇Tw
subject to wTΣw ≤ (𝜎tar)2, 1Tw = 1

▶ we address the first issue of sensitivity to data errors and estimation uncertainty
▶ the other critiques seem less relevant in practice [Luxenberg and Boyd, 2023]
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Adding practical constraints and objective terms

▶ include cash holdings c, previous holdings wpre, trades z = w − wpre

▶ account for (convex) holding costs 𝜙hold and trading costs 𝜙trade

▶ limit weights, cash, trades, turnover T = ∥z∥1, and leverage L = ∥w∥1

maximize 𝜇Tw − 𝛾hold𝜙hold (w, c) − 𝛾trade𝜙trade (z)
subject to 1Tw + c = 1, z = w − wpre,

wmin ≤ w ≤ wmax, cmin ≤ c ≤ cmax, L ≤ Ltar,
zmin ≤ z ≤ zmax, T ≤ T tar,

∥Σ1/2w∥2 ≤ 𝜎tar

remaining challenges (and solutions)
▶ Σ is estimated in factor covariance form; estimating 𝜇 is difficult and typically proprietary
▶ optimization is sensitive to errors in 𝜇 and Σ (use robustification)
▶ constraints may lead to infeasibility or unnecessary trading (use soft constraints)
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Computational benefits of factor model

▶ with factor model, cost of portfolio optimization reduced from O(n3) to O(nk2) flops
[Boyd and Vandenberghe, 2004]

▶ easily exploited in modeling languages like CVXPY
▶ timings for Clarabel open source solver:

solve time (s)
assets n factors k factor model full covariance

100 10 0.002 0.040
300 20 0.010 0.700

1000 30 0.080 25.600
3000 50 0.600 460.000
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Robustifying Markowitz

▶ basic Markowitz optimization can be sensitive to estimation errors in 𝜇, Σ
▶ replace mean return 𝜇Tw with worst-case return

Rwc = min{(𝜇 + 𝛿)Tw | |𝛿 | ≤ 𝜌} = 𝜇Tw − 𝜌T |w|

where 𝜌 ≥ 0 is vector of mean return uncertainties
▶ replace risk wTΣw with worst-case risk(

𝜎wc)2
= max{wT (Σ + Δ)w | |Δij | ≤ 𝜅(ΣiiΣjj)1/2}

= 𝜎2 + 𝜅

(
n∑︁

i=1
Σ

1/2
ii |wi |

)2

where 𝜅 ≥ 0 represents covariance uncertainty
▶ easily handled by CVXPY
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Softening constraints

▶ soft constraints allow limited violations of constraints, based on priority
▶ to soften a constraint f ≤ f max, replace it with a penalty term 𝛾(f − f max)+ in the objective
▶ in Markowitz risk, leverage, and turnover can be softened, giving three priority parameters

𝛾risk, 𝛾lev, 𝛾turn

▶ the softened problem reduces unnecessary trading and is always feasible

choosing priority parameters
▶ can be chosen or initialized based on Lagrange multipliers of hard constrained problem
▶ e.g., as 80th percentile of recorded multipliers over a historical period
▶ fast solve time enables backtesting to fine-tune parameters
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Data and experimental setup

▶ S&P 100 stocks, data gathered daily from 2000-01-04 to 2023-09-22
▶ exclude stocks without data for the full period (gives n = 74 assets)
▶ simulated but realistic mean predictions, and EWMA covariance
▶ priority parameters retuned each year based on the previous two years of data

▶ focus: relative performance comparison of methods, not real portfolio construction
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Parameter tuning (in-sample)

0. initialize 𝛾hold = 𝛾trade = 1, and 𝛾risk, 𝛾lev, 𝛾turn based on hard constraint Lagrange multipliers
1. cycle through parameters, increasing the parameter (+25%), one at a time
2. keep changes if all of the following hold:

– the in-sample Sharpe ratio increases
– the in-sample annualized turnover is no more than 100
– the in-sample maximum leverage is no more than 2
– the in-sample annualized volatility is no more than 15%

if not, decrease the parameter (−20%) and check if the metrics improve
3. repeat 1–2 until convergence
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Tuning
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▶ figures show typical effect of tuning on Sharpe ratio, volatility, and turnover
▶ in-sample: April 19, 2016 to March 19, 2018
▶ out-of-sample: March 20, 2018 to March 4, 2019
▶ Sharpe ratio increases from around 4.5 to 6.0, while other metrics stay within bounds
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Portfolio performance

Metric Basic Robust
Return 3.5% 38.1%
Risk 14.4% 8.6%
Sharpe 0.2 4.6
Drawdown 80% 6%

▶ out-of-sample portfolio performance for basic Markowitz and robust Markowitz
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Conclusions

▶ convex optimization shown to be effective in quantitative finance
▶ covariance prediction

– introduced a simple and effective convex optimization-based predictor
– requires minimal tuning, is interpretable, lightweight, and effective
– outperforms popular benchmark models

▶ Markowitz portfolio construction
– extended to include practical constraints (e.g., leverage, turnover, . . . )
– addressed estimation errors with robust optimization
– leveraged soft constraints to reduce trading and ensure feasibility

▶ thesis also considers: statistical arbitrage trading, retirement funding, hyperparameter
tuning, and crypto assets

33



Acknowledgments

34



Acknowledgments

▶ Stephen Boyd

▶ my PhD committee: Mert Pilanci, Markus Pelger, Sanjay Lall, Ron Kahn
▶ collaborators: Giray Ogut, Philippe Schiele, Thomas Schmelzer
▶ cvxgrp
▶ many friends: Daniel, Max, Giray, Pelle, Otto, Gustaf, Wille, Jacob, David, Gustav, Axel,

Johan, Filip, Vincent, Jesper, Michael, Jonatan, and more
▶ Maya P r
▶ mom and dad
▶ grandma and grandpa
▶ finally, my best friend and little brother

35



Acknowledgments

▶ Stephen Boyd
▶ my PhD committee: Mert Pilanci, Markus Pelger, Sanjay Lall, Ron Kahn

▶ collaborators: Giray Ogut, Philippe Schiele, Thomas Schmelzer
▶ cvxgrp
▶ many friends: Daniel, Max, Giray, Pelle, Otto, Gustaf, Wille, Jacob, David, Gustav, Axel,

Johan, Filip, Vincent, Jesper, Michael, Jonatan, and more
▶ Maya P r
▶ mom and dad
▶ grandma and grandpa
▶ finally, my best friend and little brother

35



Acknowledgments

▶ Stephen Boyd
▶ my PhD committee: Mert Pilanci, Markus Pelger, Sanjay Lall, Ron Kahn
▶ collaborators: Giray Ogut, Philippe Schiele, Thomas Schmelzer

▶ cvxgrp
▶ many friends: Daniel, Max, Giray, Pelle, Otto, Gustaf, Wille, Jacob, David, Gustav, Axel,

Johan, Filip, Vincent, Jesper, Michael, Jonatan, and more
▶ Maya P r
▶ mom and dad
▶ grandma and grandpa
▶ finally, my best friend and little brother

35



Acknowledgments

▶ Stephen Boyd
▶ my PhD committee: Mert Pilanci, Markus Pelger, Sanjay Lall, Ron Kahn
▶ collaborators: Giray Ogut, Philippe Schiele, Thomas Schmelzer
▶ cvxgrp

▶ many friends: Daniel, Max, Giray, Pelle, Otto, Gustaf, Wille, Jacob, David, Gustav, Axel,
Johan, Filip, Vincent, Jesper, Michael, Jonatan, and more

▶ Maya P r
▶ mom and dad
▶ grandma and grandpa
▶ finally, my best friend and little brother

35



Acknowledgments

▶ Stephen Boyd
▶ my PhD committee: Mert Pilanci, Markus Pelger, Sanjay Lall, Ron Kahn
▶ collaborators: Giray Ogut, Philippe Schiele, Thomas Schmelzer
▶ cvxgrp
▶ many friends: Daniel, Max, Giray, Pelle, Otto, Gustaf, Wille, Jacob, David, Gustav, Axel,

Johan, Filip, Vincent, Jesper, Michael, Jonatan, and more

▶ Maya P r
▶ mom and dad
▶ grandma and grandpa
▶ finally, my best friend and little brother

35



Acknowledgments

▶ Stephen Boyd
▶ my PhD committee: Mert Pilanci, Markus Pelger, Sanjay Lall, Ron Kahn
▶ collaborators: Giray Ogut, Philippe Schiele, Thomas Schmelzer
▶ cvxgrp
▶ many friends: Daniel, Max, Giray, Pelle, Otto, Gustaf, Wille, Jacob, David, Gustav, Axel,

Johan, Filip, Vincent, Jesper, Michael, Jonatan, and more
▶ Maya P r

▶ mom and dad
▶ grandma and grandpa
▶ finally, my best friend and little brother

35



Acknowledgments

▶ Stephen Boyd
▶ my PhD committee: Mert Pilanci, Markus Pelger, Sanjay Lall, Ron Kahn
▶ collaborators: Giray Ogut, Philippe Schiele, Thomas Schmelzer
▶ cvxgrp
▶ many friends: Daniel, Max, Giray, Pelle, Otto, Gustaf, Wille, Jacob, David, Gustav, Axel,

Johan, Filip, Vincent, Jesper, Michael, Jonatan, and more
▶ Maya P r
▶ mom and dad

▶ grandma and grandpa
▶ finally, my best friend and little brother

35



Acknowledgments

▶ Stephen Boyd
▶ my PhD committee: Mert Pilanci, Markus Pelger, Sanjay Lall, Ron Kahn
▶ collaborators: Giray Ogut, Philippe Schiele, Thomas Schmelzer
▶ cvxgrp
▶ many friends: Daniel, Max, Giray, Pelle, Otto, Gustaf, Wille, Jacob, David, Gustav, Axel,

Johan, Filip, Vincent, Jesper, Michael, Jonatan, and more
▶ Maya P r
▶ mom and dad
▶ grandma and grandpa

▶ finally, my best friend and little brother

35



Acknowledgments

▶ Stephen Boyd
▶ my PhD committee: Mert Pilanci, Markus Pelger, Sanjay Lall, Ron Kahn
▶ collaborators: Giray Ogut, Philippe Schiele, Thomas Schmelzer
▶ cvxgrp
▶ many friends: Daniel, Max, Giray, Pelle, Otto, Gustaf, Wille, Jacob, David, Gustav, Axel,

Johan, Filip, Vincent, Jesper, Michael, Jonatan, and more
▶ Maya P r
▶ mom and dad
▶ grandma and grandpa
▶ finally, my best friend and little brother

35



Thank you!

36



Appendix

37



Covariance prediction: Some practical extensions and variations

▶ realized covariance
– uses intraperiod returns

▶ large universes
– when n is larger than 100 or so

▶ smoothing
– penalize variation in covariance estimate
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Realized covariance

▶ rt ∈ Rn×m return matrix at time t, with columns that are m intraperiod return vectors
▶ Ct = rtrT

t realized covariance at time t
▶ realized EWMA (REWMA):

Σ̂t = 𝛼t

t−1∑︁
𝜏=1

𝛽t−1−𝜏C𝜏 , t = 2, 3, . . . ,

▶ CM-REWMA combines REWMAs with different half-lives
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Realized covariance empirical results
▶ n = 39 stocks and m = 77 intraperiod returns, January 2 2004 to December 30 2016
▶ CM-IEWMA gives improvement here too
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Large universes

▶ in practice, the number of assets n can be very large
▶ we describe two closely related methods for large universes

– traditional factor model
– fitting a factor model to a (given) covariance matrix

▶ computational cost of portfolio optimization reduced from O(n3) to O(nk2) when using a
k-factor model [Boyd and Vandenberghe, 2004]
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Traditional factor model

▶ model: rt = Ftft + zt, t = 1, 2, . . . ,
– Ft ∈ Rn×k factor loadings
– ft ∈ Rk factor returns
– zt ∈ Rn idiosyncratic return

▶ we end up with covariance of low-rank plus diagonal form

Σt = FtΣ
f
tF

T
t + Et

– Σf
t factor return covariance

– Et diagonal matrix of idiosyncratic variances
▶ never have to store n × n covariance
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Fitting a factor model to a covariance matrix

▶ given covariance Σ

▶ find one in factor form, Σ̂ = FFT + E, such that the Kullback-Leibler divergence between
N(0, Σ) and N(0, Σ̂),

K(Σ, Σ̂) = 1
2

(
log

det Σ̂
detΣ

− n + Tr Σ̂−1Σ

)
is minimized

▶ equivalent to maximizing the expected log-likelihood of r ∼ N (0, Σ) under the model
N(0, Σ̂)

▶ can be solved via the expectation maximization algorithm (suggested and derived by
Emmanuel Candès)
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Large universes: empirical setup

▶ 238 US stocks over 5787 trading days
▶ traditional factor model

– create factor model using PCA on two years of data, refitted annually
– we use k factors and use the CM-IEWMA with half-lives (in days) Hvol/Hcor of ⌈k/2⌉/k, k/3k,

and 3k/6k, to compute the factor covariance
▶ fitting factor model to covariance

– use CM-IEWMA directly with half-lives (in days) Hvol/Hcor of 63/125, 125/250, 250/500, and
500/1000

– approximate CM-IEWMA predictor using factor model
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Large universes: empirical results

traditional factor model fitting factor model to covariance
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Smooth covariance predictions

▶ given predictions Σ̂t, t = 1, 2, . . .,
▶ let Σ̂sm

t be the EWMA of Σ̂t
– equivalent to minimizing 

Σ̂sm

t − Σ̂t


2
F + 𝜆



Σ̂sm
t − Σ̂sm

t−1


2
F ,

where 𝜆 is a smoothing parameter
– yields smooth covariance predictions

▶ with regularizer 𝜆∥Σ̂sm
t − Σ̂sm

t−1∥F, we obtain piecewise constant predictions
▶ smoothing can lead to reduced trading and improved portfolio performance
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Smooth covariance predictions empirical results

▶ minimum variance portfolios on five Fama-French factor returns
▶ portfolio weights for smooth and piecewise constant covariances

smooth piecewise constant
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Try it out!

from cvx.covariance.combination import from_ewmas

halflife_pairs = [(10, 21), (21, 63), (63, 125)]

combinator = from_ewmas(returns, halflife_pairs)

covariances = {}

for predictor in combinator.solve(window=10):

covariances[predictor.time] = predictor.covariance

https://github.com/cvxgrp/cov_pred_finance
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Taming Markowitz

Return Volatility Sharpe Turnover Leverage Drawdown
Equal weight 14.1% 20.1% 0.66 1.2 1.0 50.5%
Basic Markowitz 3.7% 14.5% 0.19 1145.2 9.3 78.9%
Weight-limited 20.2% 11.5% 1.69 638.4 5.1 30.0%
Leverage-limited 22.9% 11.9% 1.86 383.6 1.6 14.9%
Turnover-limited 19.0% 11.8% 1.54 26.1 6.5 25.0%
Robust 15.7% 9.0% 1.64 458.8 3.2 24.7%
Markowitz++ 38.6% 8.7% 4.32 28.0 1.8 7.0%
Tuned Markowitz++ 41.8% 8.8% 4.65 38.6 1.6 6.4%

▶ portfolio performance for various modifications to basic Markowitz optimization
▶ Markowitz++ refers to our proposed extension
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Annual returns
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Annual volatilities
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Annual Sharpes
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Solve times
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