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PhD overview

> research focus: convex optimization in quantitative finance
> key areas of study:

— covariance prediction

— portfolio construction

— statistical arbitrage trading

— retirement funding

— hyperparameter learning

— portfolio construction with crypto assets

» all problems formulated and solved through convex optimization

— yields global solution (and optimality certificate)
— fast and reliable (no need to tune parameters)
— easily specified using domain-specific languages like CVXPY



Papers

vy vyVvyy

K. Johansson, M. Ogut, M. Pelger, T. Schmelzer, S. Boyd. A simple method for predicting covariance matrices of financial returns.
Foundations and Trends in Econometrics, 2023.

S. Boyd, K. Johansson, R. Kahn, P. Schiele, T. Schmelzer. Markowitz portfolio construction at seventy. Journal of Portfolio
Management, Harry Markowitz Special Issue, 2024.

K. Johansson, T. Schmelzer, S. Boyd. Finding moving-band statistical arbitrages via convex-concave optimization. Optimization
and Engineering, 2024.

K. Johansson, T. Schmelzer, S. Boyd. A Markowitz approach to managing a dynamic basket of moving-band statistical arbitrages.
Journal of Asset Management, under review.

S. Boyd, K. Johansson, P. Schiele. Convex optimization in quantitative finance. Working paper.

K. Johansson, S. Boyd. Simple and effective portfolio construction with crypto assets. Working paper.
K. Johansson, S. Boyd. A simple model predictive control policy for retirement funding. Working paper.
K. Johansson, S. Boyd. Learning a hyperparameter policy for a trading algorithm. Working paper.



Papers: Today’s focus

vvyVvYy

K. Johansson, M. Ogut, M. Pelger, T. Schmelzer, S. Boyd. A simple method for predicting covariance matrices of financial returns.
Foundations and Trends in Econometrics, 2023.

S. Boyd, K. Johansson, R. Kahn, P. Schiele, T. Schmelzer. Markowitz portfolio construction at seventy. Journal of Portfolio
Management, Harry Markowitz Special Issue, 2024.

K. Johansson, T. Schmelzer, S. Boyd. Finding moving-band statistical arbitrages via convex-concave optimization. Optimization
and Engineering, 2024.

K. Johansson, T. Schmelzer, S. Boyd. A Markowitz approach to managing a dynamic basket of moving-band statistical arbitrages.
Journal of Asset Management, under review.

S. Boyd, K. Johansson, P. Schiele. Convex optimization in quantitative finance. Working paper.

K. Johansson, S. Boyd. Simple and effective portfolio construction with crypto assets. Working paper.
K. Johansson, S. Boyd. A simple model predictive control policy for retirement funding. Working paper.
K. Johansson, S. Boyd. Learning a hyperparameter policy for a trading algorithm. Working paper.



Predicting covariance matrices: Challenges & contributions

challenges
» financial applications require covariance predictors that react to changing market conditions
> trade-off between stability and reactivity

contributions
> a simple and effective method for predicting reactive covariance matrices of financial returns
> a new method for evaluating a covariance predictor over changing market conditions
> extensive empirical study on several large data sets
» open-source implementation in Python:
https://github.com/cvxgrp/cov_pred_finance


https://github.com/cvxgrp/cov_pred_finance

Financial returns

r, € R" is the vector of n financial asset returns over period ¢
t=1,...,T are the time periods (days, weeks, months, etc.)
(ry); is the return of asset i over period ¢

v vYyy

assets could be bonds, stocks, factors, etc.



Gaussian model

model: r; ~ N(0,X,)
» can demean return data if needed
» for most daily, weekly, or monthly return data

X = Er,rtT - (Er) (Er)T ~ Ertr,T

objective: find estimate 3, of 3,, based on ry, ..., r_;



Evaluating covariance predictors

» predictions £, ..., 37 evaluated on average log-likelihood
1 T
3T Z ( — nlog(27) —logdet S, — r,Tit‘lrt)
t=1
(larger values are better)
> best constant predictor is ™ = L ¥ 7T
> log-likelihood regret is the difference between the log-likelihood of the best constant
predictor and that of the predictors %, .. ., 37 (smaller values are better)
> the regret over multiple periods removes the effect of the log-likelihood of the empirical

covariance varying due to changing market conditions



Exponentially weighted moving average (EWMA) predictor

-1

3= a,Zﬁlil’TrTrZ, r=2,3,...

7=1

-1
> o, = (th;ll ﬁ"l‘f) = 11;% is the normalizing constant

> B e (0,1) is the forgetting factor, often expressed in terms of the half-life H = —log2/log 8



Iterated EWMA (IEWMA)

1. form initial diagonal estimate £, with (ﬁ‘,,(l))“ as EWMA of ()7 using half-life H*!

un
2. compute volatility adjusted returns

- -1/2
7'[:<Zl(])) I, t=1,...,T

3. form i,(z) as EWMA covariance of # using half-life H"

. g2 1/2
£=(50) =P ()

4. final estimate

> closely related to iterated covariance predictors [Barratt and Boyd, 2022]

» variation: let 2,(2) be correlation matrix of 7 [Engle, 2002]
> predictor parameters: H*°! and H"
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IEWMA performance over time
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> log-likelihood regret for a fast IEWMA and a slow IEWMA on 49 daily industry portfolios

> in volatile markets (2000, 2008, 2020) the fast IEWMA performs better (lower regret)
> in stable markets the slow IEWMA performs better
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Our method
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Dynamically weighted prediction combiner

1. start with K covariance predictors i,(k), k=1,...,K
2. compute Cholesky factorizations of associated precision matrices

. -1 . T
(£9) =22 (L) k=1
3. create convex combination B
2 ~ (k
L= ml,
k=1
where 7 > 0and 5 m = 1

A A A 7'
4. recover covariance predictor as 2, = (L,L,T)
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Choosing the weights via convex optimization

> choose weight vector 7 at time ¢ to maximize log-likelihood over past N time-steps
maximize YN, [ 37 logL, ;i — (1/2NLT r_j|I?
j=1 i=1 t—j,u r—jTt=illa

lj=

subjectto L, = Klnjig), r=t-1,...,t—N,
>0, 1T7=1

» convex optimization problem [Boyd and Vandenberghe, 2004]
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Combined multiple iterated EWMA (CM-IEWMA)

1. choose K half-life pairs (H}*', HZ), k=1,...,K

2. form the K IEWMA predictors f:t(k) for these half-life pairs
3. combine the IEWMAs using the dynamically weighted prediction combiner to get the

) -]
prediction ¥, = (L,L,T)

> predictor parameters: half-life pairs and lookback horizon N
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Data set and experimental setup

> data: n = 49 daily industry portfolio returns 1970-2023, T = 13,496 trading days
» compare five covariance predictors
— rolling window (RW) with a 500-day window
— EWMA with 250-day half-life
— IEWMA with half-lives HY°!/H°" of 125/250 (in days)
MGARCH with parameters re-estimated annually
CM-IEWMA with K = 5 predictors with half-lives (in days):
H® 21 63 125 250 500
H" 63 125 250 500 1000

> results on other data sets like stocks and factors are qualitatively similar
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Log-likelihood regret

Predictor Average Std.dev. Max.
RW 20.4 6.9 728
EWMA 19.4 6.2 70.1
IEWMA 18.2 36 414
MGARCH 17.9 3.0 328
CM-IEWMA 16.9 24 284

> metrics on quarterly regret (over 212 quarters)

» CM-IEWMA performs best
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CM-IEWMA component weights 7
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> average weight 7;, i = 1,...,5 on the five IEWMAs each year

» substantial weight is put on slow IEWMAs most years
» during and following volatile periods we see significant weight increase on fast IEWMAs
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Extension: Factor covariance model

Zl :FIZIFIT‘FD[

F, € R™* is matrix of factor loadings

k is number of factors, typically with k < n

>!is k x k factor covariance matrix

D, is diagonal matrix of unexplained (idiosyncratic) variances

a strong regularizer which can give better return covariance estimates

vV vV vV VvV VY

factors constructed by many methods, like principal component analysis (PCA) or by hand

19



Benefits of factor covariance model
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> average regret on a 238-asset universe from 2000-2023
» factors estimated by PCA every year using previous two years of data
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Markowitz portfolio construction: Challenges & contributions

challenges
» Markowitz portfolio construction balances risk and return through convex optimization
> the basic version can be sensitive to estimation errors, often producing impractical portfolios

contributions
» collect minimal set of constraints and extensions from prior work to address practical issues

— constraints on leverage, turnover, etc. [Grinold & Kahn, 2000]
— address uncertainty with robust optimization [Ben-Tal, El Ghaoui, & Nemirovski, 2009]
— incorporate soft constraints in optimization problems [Bertsimas & Brown, 2011]

» novel method for how to prioritize constraints
> extension preserves convexity
> extensive empirical evaluation on historical data

22



Basic Markowitz optimization

maximize u’w
subjectto wiZw < (@), 1Tw=1

> variable w € R" of portfolio weights

» 1 eR"and X € S}, are asset return mean and covariance
> o' is target (per period) volatility

> basic form goes back to [Markowitz, 1952]

w = cp.Variable(n)

objective = mu.T @ w

constraints = [cp.quad_form(w, Sigma) <= sigma**2, cp.sum(w) == 1]
prob = cp.Problem(cp.Maximize(objective), constraints)
prob.solve()
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Critiques of Markowitz optimization

vV v vVVYVvYyyYy

maximize uTw

: T tary2
sensitivity to data errors and estimation uncertainty subjectto  w'Zw < ()7,

1"w=1

risk symmetry

maximizing expected utility versus mean-variance
statistical assumptions: assumes Gaussian returns, and ignores higher moments
greedy method, only looks one step ahead
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Critiques of Markowitz optimization

vV v vVVYVvYyyYy

maximize uTw

: T tary2
sensitivity to data errors and estimation uncertainty subjectto  w'Zw < ()7,

1"w=1

risk symmetry

maximizing expected utility versus mean-variance
statistical assumptions: assumes Gaussian returns, and ignores higher moments
greedy method, only looks one step ahead

we address the first issue of sensitivity to data errors and estimation uncertainty

> the other critiques seem less relevant in practice [Luxenberg and Boyd, 2023]
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Adding practical constraints and objective terms

> include cash holdings ¢, previous holdings wP', trades z = w — wP™®
> account for (convex) holding costs ¢"°? and trading costs ¢
> limit weights, cash, trades, turnover T = ||z|||, and leverage L = ||w||;

maximize ,uTW _ yhold¢hold(w’ C) _ ytrade¢trade (Z)
subjectto 1Tw+c=1, z=w-wPe®
Wmin <w< Wmax’ cmin <c< Cmax’ L< Ltar’
NN <z <M < T
IZ12wll, < o

>
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Adding practical constraints and objective terms

> include cash holdings ¢, previous holdings wP', trades z = w — wP™®
> account for (convex) holding costs ¢"°? and trading costs ¢
> limit weights, cash, trades, turnover T = ||z|||, and leverage L = ||w||;
maximize ,uTW _ yhold¢hold(w’ C) _ ytrade¢trade (Z)
subjectto 1Tw+c=1, z=w-wPe,
Wmin < w < wmax cmin < ¢ < cmax L< Ltar
Zmin <z< Zmax, T < Ttar’
”21/2‘4}”2 < otar

remaining challenges (and solutions)

> X is estimated in factor covariance form; estimating u is difficult and typically proprietary
» optimization is sensitive to errors in y and X (use robustification)
> constraints may lead to infeasibility or unnecessary trading (use soft constraints)

25



Computational benefits of factor model

> with factor model, cost of portfolio optimization reduced from O(n?) to O(nk?) flops
[Boyd and Vandenberghe, 2004]

» easily exploited in modeling languages like CVXPY
» timings for Clarabel open source solver:

solve time (s)
assetsn factors k factor model full covariance

100 10 0.002 0.040
300 20 0.010 0.700
1000 30 0.080 25.600

3000 50 0.600 460.000




Robustifying Markowitz

> basic Markowitz optimization can be sensitive to estimation errors in u,
> replace mean return u”w with worst-case return
R" = min{(u+06)"w | 6] < p} = pu"w-p"|w|

where p > 0 is vector of mean return uncertainties
> replace risk w! Zw with worst-case risk

wc)2

(o max{w! (X + A)w | |Aj] < k(ZiZ;) %)

2
n
1/2
o2 +k (Z Eii/ |w,~|)
i=1

where k > 0 represents covariance uncertainty
> easily handled by CVXPY
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Softening constraints

v

soft constraints allow limited violations of constraints, based on priority

v

to soften a constraint f < f™& replace it with a penalty term y(f — f™#), in the objective

v

in Markowitz risk, leverage, and turnover can be softened, giving three priority parameters

risk lev turn

Yo Y.

v

the softened problem reduces unnecessary trading and is always feasible

28



Softening constraints

> soft constraints allow limited violations of constraints, based on priority
> to soften a constraint f < f™& replace it with a penalty term y (f — f™#), in the objective

> in Markowitz risk, leverage, and turnover can be softened, giving three priority parameters

risk lev turn

Yoo,
> the softened problem reduces unnecessary trading and is always feasible
choosing priority parameters
> can be chosen or initialized based on Lagrange multipliers of hard constrained problem

> e.g., as 80th percentile of recorded multipliers over a historical period
» fast solve time enables backtesting to fine-tune parameters
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Data and experimental setup

» S&P 100 stocks, data gathered daily from 2000-01-04 to 2023-09-22

» exclude stocks without data for the full period (gives n = 74 assets)

» simulated but realistic mean predictions, and EWMA covariance

> priority parameters retuned each year based on the previous two years of data

> focus: relative performance comparison of methods, not real portfolio construction

29



Parameter tuning (in-sample)

0. initialize y"!d = yrade — | and y"isk eV M hased on hard constraint Lagrange multipliers
1. cycle through parameters, increasing the parameter (+25%), one at a time
2. keep changes if all of the following hold:

— the in-sample Sharpe ratio increases

— the in-sample annualized turnover is no more than 100

— the in-sample maximum leverage is no more than 2

— the in-sample annualized volatility is no more than 15%

if not, decrease the parameter (-20%) and check if the metrics improve

3. repeat 1-2 until convergence

30



Tuning
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> figures show typical effect of tuning on Sharpe ratio, volatility, and turnover

> in-sample: April 19, 2016 to March 19, 2018

» out-of-sample: March 20, 2018 to March 4, 2019

> Sharpe ratio increases from around 4.5 to 6.0, while other metrics stay within bounds
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Portfolio performance

9
10" " —— Basic Markowitz
—— Robust Markowitz

Portfolio value
N
o

qub 10\0 rLQ\q’ QS)\& r;p\ro r;_,()\‘b r;pqp r;p{ﬁ

Metric Basic  Robust
Return 3.5% 38.1%
Risk 14.4% 8.6%
Sharpe 0.2 4.6
Drawdown 80% 6%

» out-of-sample portfolio performance for basic Markowitz and robust Markowitz
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Conclusions

v

convex optimization shown to be effective in quantitative finance
covariance prediction

— introduced a simple and effective convex optimization-based predictor
— requires minimal tuning, is interpretable, lightweight, and effective
— outperforms popular benchmark models

Markowitz portfolio construction

— extended to include practical constraints (e.g., leverage, turnover, ...)
— addressed estimation errors with robust optimization
— leveraged soft constraints to reduce trading and ensure feasibility

v

v

\4

thesis also considers: statistical arbitrage trading, retirement funding, hyperparameter
tuning, and crypto assets
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Covariance prediction: Some practical extensions and variations

> realized covariance
— uses intraperiod returns
> large universes
— when n is larger than 100 or so
» smoothing
— penalize variation in covariance estimate

38



Realized covariance

v

r, € R™ return matrix at time ¢, with columns that are m intraperiod return vectors
> C; = r,r,T realized covariance at time ¢

> realized EWMA (REWMA):
-1
$ = a,ZﬁH’TCT, 1=2.3,...,
7=1
» CM-REWMA combines REWMAs with different half-lives

39



Realized covariance empirical results

» n =39 stocks and m = 77 intraperiod returns, January 2 2004 to December 30 2016
» CM-IEWMA gives improvement here too

1.0
0.8
0.6

0.4

Empirical CDF

— CM-IEWMA
— REWMA
— CM-REWMA

0.2

0.0
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Large universes

> in practice, the number of assets n can be very large
> we describe two closely related methods for large universes
— traditional factor model
— fitting a factor model to a (given) covariance matrix
> computational cost of portfolio optimization reduced from O(n?) to O(nk?) when using a
k-factor model [Boyd and Vandenberghe, 2004]
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Traditional factor model

> model: r, = Fify+z,, t=1,2,...,
— F, € R factor loadings
— f; € R¥ factor returns
— 7 € R" idiosyncratic return

> we end up with covariance of low-rank plus diagonal form
Y =F2F + E

— xf factor return covariance
— E; diagonal matrix of idiosyncratic variances

» never have to store n X n covariance
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Fitting a factor model to a covariance matrix

» given covariance X

> find one in factor form, 3 = FFT + E, such that the Kullback-Leibler divergence between
N(0,%) and N(0,%),

is minimized

> equivaAlIent to maximizing the expected log-likelihood of r ~ N(0, ) under the model
N(0,%)

> can be solved via the expectation maximization algorithm (suggested and derived by
Emmanuel Candeés)
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Large universes: empirical setup

» 238 US stocks over 5787 trading days
> traditional factor model
— create factor model using PCA on two years of data, refitted annually
— we use k factors and use the CM-IEWMA with half-lives (in days) H¥®'/H" of [k/2]/k, k/3k,
and 3k/6k, to compute the factor covariance
» fitting factor model to covariance
— use CM-IEWMA directly with half-lives (in days) HYO/HCT of 63/125, 125/250, 250/500, and
500/1000
— approximate CM-IEWMA predictor using factor model
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Large universes: empirical results
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Smooth covariance predictions

> given predictions 3, r=1,2,.. .,
> let 5™ be the EWMA of £,

— equivalent to minimizing

I - 17+ aE5m - S5 7
where A is a smoothing parameter

— yields smooth covariance predictions
> with regularizer ||£$™ — £5™ || -, we obtain piecewise constant predictions
» smoothing can lead to reduced trading and improved portfolio performance

46



Smooth covariance predictions empirical results

> minimum variance portfolios on five Fama-French factor returns

» portfolio weights for smooth and piecewise constant covariances

0.6

0.4

0.2

0.0

1970

1980

1990 2000 2010 2020

smooth

0.6

0.4

0.2

0.0

-0.2

—

1970 1980 1990 2000 2010 2020

piecewise constant

47



Try it out!

from cvx.covariance.combination import from_ewmas

halflife_pairs = [(10, 21), (21, 63), (63, 125)]

combinator = from_ewmas(returns, halflife_pairs)

covariances = {}

for predictor in combinator.solve(window=10):
covariances[predictor.time] = predictor.covariance

https://github.com/cvxgrp/cov_pred_finance
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Taming Markowitz

Return  Volatility Sharpe Turnover Leverage Drawdown
Equal weight 14.1% 20.1% 0.66 1.2 1.0 50.5%
Basic Markowitz 3.7% 14.5% 0.19 1145.2 9.3 78.9%
Weight-limited 20.2% 11.5% 1.69 638.4 5.1 30.0%
Leverage-limited 22.9% 11.9% 1.86 383.6 1.6 14.9%
Turnover-limited 19.0% 11.8% 1.54 26.1 6.5 25.0%
Robust 15.7% 9.0% 1.64 458.8 3.2 24.7%
Markowitz++ 38.6% 8.7% 4.32 28.0 1.8 7.0%
Tuned Markowitz++ 41.8% 8.8% 4.65 38.6 1.6 6.4%

» portfolio performance for various modifications to basic Markowitz optimization

> Markowitz++ refers to our proposed extension
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Annual returns
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Annual volatilities
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Annual Sharpes

Sharpe ratio
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Solve times
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