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Markowitz portfolio construction: Challenges & contributions

challenges
» Markowitz portfolio construction balances risk and return through convex optimization
> the basic version can be sensitive to estimation errors, often producing impractical portfolios

contributions
» collect minimal set of constraints and extensions from prior work to address practical issues

— constraints on leverage, turnover, etc. [Grinold & Kahn, 2000]
— address uncertainty with robust optimization [Ben-Tal, El Ghaoui, & Nemirovski, 2009]
— incorporate soft constraints in optimization problems [Bertsimas & Brown, 2011]

» novel method for how to prioritize constraints
> extension preserves convexity: easily implemented in CVXPY
> extensive empirical evaluation on historical data



Basic Markowitz optimization

maximize u’w
subjectto wiZw < (@), 1Tw=1

> variable w € R" of portfolio weights

» 1 eR"and X € S}, are asset return mean and covariance
> o' is target (per period) volatility

> basic form goes back to [Markowitz, 1952]

w = cp.Variable(n)

objective = mu.T @ w

constraints = [cp.quad_form(w, Sigma) <= sigma**2, cp.sum(w) == 1]
prob = cp.Problem(cp.Maximize(objective), constraints)
prob.solve()



Critiques of Markowitz optimization

maximize uTw

: T tary2 T, —
sensitivity to data errors and estimation uncertainty subjectto w'Zw < ()%, Tw=1

risk symmetry
maximizing expected utility versus mean-variance
statistical assumptions: assumes Gaussian returns, and ignores higher moments
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greedy method, only looks one step ahead
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> we address the first issue of sensitivity to data errors and estimation uncertainty
> the other critiques seem less relevant in practice [Luxenberg and Boyd, 2023]



Adding practical constraints and objective terms

> include cash holdings ¢, previous holdings wP', trades z = w — wP™®
> account for (convex) holding costs ¢"°? and trading costs ¢
> limit weights, cash, trades, turnover T = ||z|||, and leverage L = ||w||;

maximize ,uTW _ yhold¢hold(w’ C) _ ytrade¢trade (Z)
subjectto 1Tw+c=1, z=w-wPe®
Wmin <w< Wmax’ cmin <c< Cmax’ L< Ltar’
NN <z <M < T
IZ12wll, < o
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remaining challenges (and solutions)

> X is estimated in factor covariance form; estimating u is difficult and typically proprietary
» optimization is sensitive to errors in y and X (use robustification)
> constraints may lead to infeasibility or unnecessary trading (use soft constraints)



Factor covariance model

Zl :FIZIFIT‘FD[

F, € R™* is matrix of factor loadings

k is number of factors, typically with k < n

>!is k x k factor covariance matrix

D, is diagonal matrix of unexplained (idiosyncratic) variances

a strong regularizer which can give better return covariance estimates
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factors constructed by many methods, like principal component analysis (PCA) or by hand



Computational benefits of factor model

> with factor model, cost of portfolio optimization reduced from O(n?) to O(nk?) flops
[Boyd and Vandenberghe, 2004]

» easily exploited in modeling languages like CVXPY
» timings for Clarabel open source solver:

solve time (s)
assetsn factors k factor model full covariance

100 10 0.002 0.040
300 20 0.010 0.700
1000 30 0.080 25.600

3000 50 0.600 460.000




Robustifying Markowitz
> basic Markowitz optimization can be sensitive to estimation errors in u,
> replace mean return u”w with worst-case return
R" = min{(u+06)"w | 6] < p} = pu"w-p"|w|

where p > 0 is vector of mean return uncertainties
> replace risk w! Zw with worst-case risk

2
%) = max{w’ (Z+A)w | [Ay] < 0(ZiZ;)'?}
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n
1/2
0—2 +o (Z Z’ii/ |Wi|)

i=1

(o

where o > 0 represents covariance uncertainty
> easily handled by CVXPY



Softening constraints

v

soft constraints allow limited violations of constraints, based on priority

v

to soften a constraint f < f™& replace it with a penalty term y(f — f™#), in the objective

v

in Markowitz risk, leverage, and turnover can be softened, giving three priority parameters

risk lev turn

Yo Y.

v

the softened problem reduces unnecessary trading and is always feasible
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> the softened problem reduces unnecessary trading and is always feasible

choosing priority parameters
> can be chosen or initialized based on Lagrange multipliers of hard constrained problem
> e.g., as 80th percentile of recorded multipliers over a historical period
» fast solve time enables backtesting to fine-tune parameters
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Implementation in CVXPY

W, C, z = cp.Variable(n_assets), cp.Variable(), cp.Variable(n_assets)

return_wc = mu @ w - rho_mean @ cp.abs(w)

risk_uncertainty = rho_covariance ** 0.5 * volas @ cp.abs(w)
risk_wc = cp.norm2(cp.hstack([cp.norm2(chol.T @ w), risk_uncertainty]))

objective = (
return_wc
- param.gamma_hold * kappa_short @ cp.pos(-w)
- param.gamma_trade * kappa_spread @ cp.abs(z)

)

constraints = [cp.sum(w) + ¢ == 1,
w_min <= w, W <= w_max, c_min <= ¢, ¢ <= c_max,
z_min <= z, z <= z_max, z == W - W_prev,

cp.norml(z) <= T_tar, cp.norml(w) <= L_tar, risk_wc <= sigma_tar]

cp.Problem(cp.Maximize(objective), constraints).solve()
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Data and experimental setup

» S&P 100 stocks, data gathered daily from 2000-01-04 to 2023-09-22

» exclude stocks without data for the full period (gives n = 74 assets)

» simulated but realistic mean predictions, and EWMA covariance

> priority parameters retuned each year based on the previous two years of data

> focus: relative performance comparison of methods, not real portfolio construction
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Portfolio performance

9
10" " —— Basic Markowitz
—— Robust Markowitz

Portfolio value
N
o

qub 10\0 rLQ\q’ QS)\& r;p\ro r;_,()\‘b r;pqp r;p{ﬁ

Metric Basic  Robust
Return 3.5% 38.1%
Risk 14.4% 8.6%
Sharpe 0.2 4.6
Drawdown 80% 6%

» out-of-sample portfolio performance for basic Markowitz and robust Markowitz
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Conclusions

> basic Markowitz optimization can be sensitive to estimation errors and uncertainties
> extended to include practical constraints (e.g., leverage, turnover, ...)

> addressed estimation errors with robust optimization

> leveraged soft constraints to reduce trading and ensure feasibility

» can be handled nicely with modern domain-specific languages like CVXPY
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Thank youl!
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