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Markowitz portfolio construction: Challenges & contributions

challenges
▶ Markowitz portfolio construction balances risk and return through convex optimization
▶ the basic version can be sensitive to estimation errors, often producing impractical portfolios

contributions
▶ collect minimal set of constraints and extensions from prior work to address practical issues

– constraints on leverage, turnover, etc. [Grinold & Kahn, 2000]
– address uncertainty with robust optimization [Ben-Tal, El Ghaoui, & Nemirovski, 2009]
– incorporate soft constraints in optimization problems [Bertsimas & Brown, 2011]

▶ novel method for how to prioritize constraints
▶ extension preserves convexity: easily implemented in CVXPY
▶ extensive empirical evaluation on historical data
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Basic Markowitz optimization

maximize 𝜇Tw
subject to wTΣw ≤ (𝜎tar)2, 1Tw = 1

▶ variable w ∈ Rn of portfolio weights
▶ 𝜇 ∈ Rn and Σ ∈ Sn

++ are asset return mean and covariance
▶ 𝜎tar is target (per period) volatility
▶ basic form goes back to [Markowitz, 1952]

w = cp.Variable(n)

objective = mu.T @ w

constraints = [cp.quad_form(w, Sigma) <= sigma**2, cp.sum(w) == 1]

prob = cp.Problem(cp.Maximize(objective), constraints)

prob.solve()
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Critiques of Markowitz optimization

▶ sensitivity to data errors and estimation uncertainty
▶ risk symmetry
▶ maximizing expected utility versus mean-variance
▶ statistical assumptions: assumes Gaussian returns, and ignores higher moments
▶ greedy method, only looks one step ahead

maximize 𝜇Tw
subject to wTΣw ≤ (𝜎tar)2, 1Tw = 1

▶ we address the first issue of sensitivity to data errors and estimation uncertainty
▶ the other critiques seem less relevant in practice [Luxenberg and Boyd, 2023]
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Adding practical constraints and objective terms

▶ include cash holdings c, previous holdings wpre, trades z = w − wpre

▶ account for (convex) holding costs 𝜙hold and trading costs 𝜙trade

▶ limit weights, cash, trades, turnover T = ∥z∥1, and leverage L = ∥w∥1

maximize 𝜇Tw − 𝛾hold𝜙hold (w, c) − 𝛾trade𝜙trade (z)
subject to 1Tw + c = 1, z = w − wpre,

wmin ≤ w ≤ wmax, cmin ≤ c ≤ cmax, L ≤ Ltar,
zmin ≤ z ≤ zmax, T ≤ T tar,

∥Σ1/2w∥2 ≤ 𝜎tar

remaining challenges (and solutions)
▶ Σ is estimated in factor covariance form; estimating 𝜇 is difficult and typically proprietary
▶ optimization is sensitive to errors in 𝜇 and Σ (use robustification)
▶ constraints may lead to infeasibility or unnecessary trading (use soft constraints)
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Factor covariance model

Σt = FtΣ
f
tF

T
t + Dt

▶ Ft ∈ Rn×k is matrix of factor loadings
▶ k is number of factors, typically with k ≪ n
▶ Σf

t is k × k factor covariance matrix
▶ Dt is diagonal matrix of unexplained (idiosyncratic) variances
▶ a strong regularizer which can give better return covariance estimates
▶ factors constructed by many methods, like principal component analysis (PCA) or by hand
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Computational benefits of factor model

▶ with factor model, cost of portfolio optimization reduced from O(n3) to O(nk2) flops
[Boyd and Vandenberghe, 2004]

▶ easily exploited in modeling languages like CVXPY
▶ timings for Clarabel open source solver:

solve time (s)
assets n factors k factor model full covariance

100 10 0.002 0.040
300 20 0.010 0.700

1000 30 0.080 25.600
3000 50 0.600 460.000
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Robustifying Markowitz

▶ basic Markowitz optimization can be sensitive to estimation errors in 𝜇, Σ
▶ replace mean return 𝜇Tw with worst-case return

Rwc = min{(𝜇 + 𝛿)Tw | |𝛿 | ≤ 𝜌} = 𝜇Tw − 𝜌T |w|

where 𝜌 ≥ 0 is vector of mean return uncertainties
▶ replace risk wTΣw with worst-case risk(

𝜎wc)2
= max{wT (Σ + Δ)w | |Δij | ≤ 𝜚(ΣiiΣjj)1/2}

= 𝜎2 + 𝜚

(
n∑︁

i=1
Σ

1/2
ii |wi |

)2

where 𝜚 ≥ 0 represents covariance uncertainty
▶ easily handled by CVXPY
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Softening constraints

▶ soft constraints allow limited violations of constraints, based on priority
▶ to soften a constraint f ≤ f max, replace it with a penalty term 𝛾(f − f max)+ in the objective
▶ in Markowitz risk, leverage, and turnover can be softened, giving three priority parameters

𝛾risk, 𝛾lev, 𝛾turn

▶ the softened problem reduces unnecessary trading and is always feasible

choosing priority parameters
▶ can be chosen or initialized based on Lagrange multipliers of hard constrained problem
▶ e.g., as 80th percentile of recorded multipliers over a historical period
▶ fast solve time enables backtesting to fine-tune parameters
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Implementation in CVXPY

1 w, c, z = cp.Variable(n_assets), cp.Variable(), cp.Variable(n_assets)

2
3 return_wc = mu @ w - rho_mean @ cp.abs(w)

4 risk_uncertainty = rho_covariance ** 0.5 * volas @ cp.abs(w)

5 risk_wc = cp.norm2(cp.hstack([cp.norm2(chol.T @ w), risk_uncertainty]))

6
7 objective = (

8 return_wc

9 - param.gamma_hold * kappa_short @ cp.pos(-w)

10 - param.gamma_trade * kappa_spread @ cp.abs(z)

11 )

12
13 constraints = [cp.sum(w) + c == 1,

14 w_min <= w, w <= w_max, c_min <= c, c <= c_max,

15 z_min <= z, z <= z_max, z == w - w_prev,

16 cp.norm1(z) <= T_tar, cp.norm1(w) <= L_tar, risk_wc <= sigma_tar]

17
18 cp.Problem(cp.Maximize(objective), constraints).solve()
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Data and experimental setup

▶ S&P 100 stocks, data gathered daily from 2000-01-04 to 2023-09-22
▶ exclude stocks without data for the full period (gives n = 74 assets)
▶ simulated but realistic mean predictions, and EWMA covariance
▶ priority parameters retuned each year based on the previous two years of data

▶ focus: relative performance comparison of methods, not real portfolio construction
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Portfolio performance

Metric Basic Robust
Return 3.5% 38.1%
Risk 14.4% 8.6%
Sharpe 0.2 4.6
Drawdown 80% 6%

▶ out-of-sample portfolio performance for basic Markowitz and robust Markowitz
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Conclusions

▶ basic Markowitz optimization can be sensitive to estimation errors and uncertainties
▶ extended to include practical constraints (e.g., leverage, turnover, . . . )
▶ addressed estimation errors with robust optimization
▶ leveraged soft constraints to reduce trading and ensure feasibility
▶ can be handled nicely with modern domain-specific languages like CVXPY
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Thank you!
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