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Preface

Over the past 70 years, quantitative investing has evolved from a niche discipline guided by heuristics

and rules of thumb into a mainstream approach to portfolio management. This transformation has

been propelled in large part by advances in mathematical optimization, especially convex optimization,

and remarkable growth in computational power.

Convex optimization problems, which exhibit certain structural properties, can be solved reliably

and e�ciently, even when involving large-scale, nonlinear, or nondi↵erentiable functions. These

methods are particularly well-suited for quantitative finance, where models often balance complexity,

interpretability, and scalability.

This thesis explores the application of convex optimization to three central challenges in quanti-

tative investing: predicting the covariance matrix of asset returns, generating and combining asset

signals, and constructing portfolios. Building on foundational work by Markowitz (1952) and Engle

(2002), we develop methods that are e↵ective, interpretable, and computationally e�cient. Together,

these contributions address the core steps of the investment process: risk estimation, return prediction,

and portfolio optimization.
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Chapter 1

Introduction

This thesis covers five applications of convex optimization in quantitative investing, addressing

core challenges in risk estimation, signal generation, and portfolio construction. Each chapter is

based on a published or forthcoming paper and represents a collaborative e↵ort to develop practical,

interpretable, and computationally e�cient methods for real-world financial decision-making.

Chapter 2 is based on the paper [163], co-authored with Giray Ogut, Thomas Schmelzer, Markus

Pelger, and Stephen Boyd. In this chapter we consider the well-studied problem of predicting

the time-varying covariance matrix of a vector of financial returns. Popular methods range from

simple predictors like rolling window or exponentially weighted moving average (EWMA) to more

sophisticated predictors such as generalized autoregressive conditional heteroscedastic (GARCH)

type methods. Building on a specific covariance estimator suggested by Engle in 2002, we propose a

relatively simple extension that requires little or no tuning or fitting, is interpretable, and produces

results at least as good as MGARCH, a popular extension of GARCH that handles multiple assets.

To evaluate predictors we introduce a novel approach, evaluating the regret of the log-likelihood over

a time period such as a quarter. This metric allows us to see not only how well a covariance predictor

does over all, but also how quickly it reacts to changes in market conditions. Our simple predictor

slightly outperforms MGARCH in terms of regret. We also test covariance predictors on downstream

applications such as portfolio optimization methods that depend on the covariance matrix. For these

applications our simple covariance predictor and MGARCH perform similarly.

Chapter 3 is based on the paper [45], co-authored with Stephen Boyd, Ronald Kahn, Philipp

Schiele, and Thomas Schmelzer. In this chapter we study the Markowitz portfolio construction

problem. More than seventy years ago Harry Markowitz formulated portfolio construction as an

optimization problem that trades o↵ expected return and risk, defined as the standard deviation of the

portfolio returns. Since then the method has been extended to include many practical constraints and

objective terms, such as transaction cost or leverage limits. Despite several criticisms of Markowitz’s

method, for example its sensitivity to poor forecasts of the return statistics, it has become the

1



CHAPTER 1. INTRODUCTION 2

dominant quantitative method for portfolio construction in practice. In this article we describe

an extension of Markowitz’s method that addresses many practical e↵ects and gracefully handles

the uncertainty inherent in return statistics forecasting. Like Markowitz’s original formulation, the

extension is also a convex optimization problem, which can be solved with high reliability and speed.

Chapter 4 is based on the paper [165], co-authored with Thomas Schmelzer and Stephen Boyd.

This chapter proposes a new method for finding statistical arbitrages (stat-arbs) that can contain

more assets than just the traditional pair. We formulate the problem as seeking a portfolio with the

highest volatility, subject to its price remaining in a band and a leverage limit. This optimization

problem is not convex, but can be approximately solved using the convex-concave procedure, a

specific sequential convex programming method. We show how the method generalizes to finding

moving-band stat-arbs, where the price band midpoint varies over time.

Chapter 5 is based on the paper [166], co-authored with Thomas Schmelzer and Stephen Boyd.

This chapter develops a method for managing a dynamic basket of moving-band stat-arbs, leveraging

the convex-concave optimization method introduced in the previous chapter. We consider illustrate

the method on recent historical data, showing that it can perform very well in terms of risk-adjusted

return, essentially uncorrelated with the market.

Lastly, chapter 6 is based on the paper [167], co-authored with Stephen Boyd. In this chapter we

consider the problem of constructing a portfolio that combines traditional financial assets with crypto

assets. We show that despite the documented attributes of crypto assets, such as high volatility, heavy

tails, excess kurtosis and skewness, a simple extension of traditional risk allocation provides robust

solutions for integrating these emerging assets into broader investment strategies. Examination of

the risk allocation holdings suggests an even simpler method, analogous to the traditional 60/40

stocks/bonds allocation, involving a fixed allocation to crypto and traditional assets, dynamically

diluted with cash to achieve a target risk level.



Chapter 2

A simple covariance predictor for

financial returns

2.1 Introduction

2.1.1 Covariance prediction

We consider cross-sections, e.g., a vector time series of n financial returns, denoted rt 2 Rn,

t = 1, 2, . . ., where (rt)i is the return of asset i from t � 1 to t. We focus on the case where the

mean E rt is small enough that the second moment E rtrTt 2 Rn⇥n is a good approximation of the

covariance matrix cov(rt) = E rtrTt � (E rt)(E rt)T , where E denotes expectation. This is the case

for most daily, weekly, or monthly stock, bond, and futures returns, factor returns, and index returns.

We start by focussing on the case where the number of assets n is modest, say, on the order 10–100

or so; in section 2.8 we explain how to extend the method to much larger universes using ideas such

as factor models.

We model the returns rt as independent random variables with zero mean and covariance ⌃t 2 Sn

++

(the set of symmetric positive definite matrices). We focus on the problem of predicting or estimating

⌃t, based on knowledge of r1, . . . , rt�1. The prediction is denoted as ⌃̂t 2 Sn

++. The predicted

volatilities of assets are given by

�̂t = diag(⌃̂t)
1/2 2 Rn,

where diag with a matrix argument is the vector of diagonal entries of the matrix, and the squareroot

of a vector above is elementwise. We denote the predicted correlations as

R̂t = diag(�̂t)
�1⌃̂t diag(�̂t)

�1,

3
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where diag with a vector argument is the diagonal matrix with entries from the vector argument.

Covariance estimation comes up in several areas of finance, including Markowitz portfolio con-

struction [208, 129], risk management [224], and asset pricing [280]. Much attention has been devoted

to this problem, and a Nobel Memorial Prize in Economic Sciences was awarded for work directly

related to volatility estimation [90].

While it is well known that the tails of financial returns are poorly modeled by a Gaussian

distribution, our focus here is on the bulk of the distribution, where the Gaussian assumption is

reasonable. For future use, we note that the log-likelihood of an observed return rt, under the

Gaussian distribution rt ⇠ N (0, ⌃̂t), is

lt(⌃̂t) =
1

2

⇣
�n log(2⇡)� log det ⌃̂t � rT

t
⌃̂�1

t
rt
⌘
. (2.1)

The Gaussian log-likelihood is closely related to a popular metric for evaluating covariance predictors

in econometrics, called the (Gaussian) quasi-likelihood (QLIKE) [249, 250, 183]. QLIKE is the

negative log-likelihood, under the Gaussian assumption, up to an additive constant and a positive

scale factor. Roughly speaking, we seek covariance predictors that achieve large values of log-

likelihood, or small values of QLIKE, on realized returns. We will describe evaluation of covariance

predictors in detail in section 2.4.

2.1.2 Contributions

This monograph makes three contributions. First, we propose a new method for predicting the

time-varying covariance matrix of a vector of financial returns, building on a specific covariance

estimator suggested by Engle in 2002. Our method is a relatively simple extension that requires very

little tuning and is readily interpretable. It relies on solving a small convex optimization problem,

which can be carried out very quickly and reliably [48]. Our method performs as well as much more

complex methods, as measured by several metrics.

Our second contribution is to propose a new method for evaluating a covariance predictor, by

considering the regret of the log-likelihood over some time period such as a quarter. This approach

allows us to evaluate how quickly a covariance estimator reacts to changes in market conditions.

Our third contribution is an extensive empirical study of covariance predictors. We compare our

new method to other popular predictors, including rolling window, exponentially weighted moving

average (EWMA), and generalized autoregressive conditional heteroscedastic (GARCH) type methods.

We find that our method performs slightly better than other predictors. However, even the simplest

predictors perform well for practical problems like portfolio optimization.

Everything needed to reproduce our results, together with an open source implementation of our

proposed covariance predictor, is available online at

https://github.com/cvxgrp/cov_pred_finance.

https://github.com/cvxgrp/cov_pred_finance
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2.1.3 Outline

In section 2.2 we describe some common predictors, including the one that our method builds on.

We introduce our proposed covariance predictor in section 2.3. In section 2.4 we discuss methods

for validating covariance predictors that measure both overall performance and reactivity to market

changes. We describe the data we use in our first empirical studies in section 2.5, and give the results

in section 2.6.

In the next sections we discuss some extensions of and variations on our method, including

realized covariance prediction (section 2.7), handling large universes via factor models (section 2.8),

obtaining smooth covariance estimates (section 2.9), and using our covariance model to generate

simulated returns (section 2.10).

2.2 Some common covariance predictors

In this section we review some common covariance predictors, ranging from simple to complex, with

the goal of giving context and fixing our notation. To simplify some formulas, we take r⌧ = 0 for

⌧  0.

2.2.1 Rolling window

The rolling window predictor with window length or memory M is the average of the last M � n

outer products,

⌃̂t = ↵t

t�1X

⌧=t�M

r⌧r
T

⌧
, t = 2, 3, . . . ,

where ↵t = 1/min{t � 1,M} is the normalization constant. The rolling window predictor can be

evaluated via the recursion

⌃̂t+1 =
↵t+1

↵t

⌃̂t + ↵t+1(rtr
T

t
� rt�MrT

t�M
), t = 1, 2, . . . ,

with initialization ⌃̂1 = 0.

For t < n, the rolling window covariance estimate is not full rank. To handle this, as well as to

improve the quality of the prediction, we can add regularization or shrinkage, for example by adding

a positive multiple of diag(⌃̂t) to our estimate [185, 184], or approximating the predicted covariance

matrix by a diagonal plus low rank matrix, as described in section 2.8.
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2.2.2 EWMA

The exponentially weighted moving average (EWMA) estimator, with forgetting factor � 2 (0, 1), is

⌃̂t = ↵t

t�1X

⌧=1

�t�1�⌧r⌧r
T

⌧
, t = 2, 3, . . . , (2.2)

where

↵t =

 
t�1X

⌧=1

�t�1�⌧

!�1

=
1� �

1� �t�1

is the normalization constant. The forgetting factor � is usually expressed in terms of the half-

life H = � log 2/ log �, for which �H = 1/2. The half-life H is the number of periods when the

exponential weight has decreased by a factor of two. For example, for a half-life of one year, the

current observed return has twice the impact on our covariance prediction as the return observed

one year ago. The EWMA predictor is widely used in practice; for example RiskMetrics suggests the

forgetting factor � = 0.94, which corresponds to a half-life of around 11 days [225, 201].

The EWMA covariance predictor can be computed recursively as

⌃̂t+1 =
� � �t

1� �t
⌃̂t +

1� �

1� �t
rtr

T

t
, t = 1, 2, . . . ,

with initialization ⌃̂1 = 0. Like the rolling window predictor, the EWMA predictor is singular for

t < n, which can be handled using the same regularization methods described above.

2.2.3 GARCH and MGARCH

GARCH. The generalized autoregressive conditional heteroscedastic (GARCH) predictor decom-

poses the return of a single asset as

rt = µ+ ✏t,

where µ is the mean return and ✏t is the innovation, and models the innovation as

✏t = �tzt, �2
t
= ! +

qX

⌧=1

a⌧ ✏
2
t�⌧

+
pX

⌧=1

b⌧�
2
t�⌧

,

where �t is the asset volatility, zt are independent N (0, 1), and q and p (often both set to one

in practice) determine the GARCH order [36]. (Recall that we assume zero mean.) The model

parameters are !, a1, . . . , aq, and b1, . . . , bp. Estimating the model parameters requires solving a

nonconvex optimization problem [18].

With p = 0 we recover the autoregressive conditional heteroscedastic (ARCH) predictor, introduced

in the seminal paper by [90]. This paper set the foundation for a wide variety of popular volatility
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and correlation predictors and earned him the 2003 Nobel Memorial Prize in Economic Sciences.

MGARCH. There are several ways of extending the GARCH predictor to a multivariate or vector

setting. The most popular is the dynamic conditional correlation (DCC) predictor [92], which is a

two-step approach described below.

Many other MGARCH predictors have been proposed. The most straightforward generalization

from the univariate to multivariate predictors is the VEC predictor, where the covariance matrix

is vectorized and each element is modeled as a GARCH process with dependencies on all other

elements [38]. However, this extension requires estimating n(n+1)(n(n+1)+1)/2 ⇡ n4/2 parameters,

which can be impractical even for modest values of n.

Following the VEC extension of GARCH, multivariate GARCH (MGARCH) predictors have been

proposed in two lines of development [285]. The first line involves models that impose restrictions

on the parameters of the VEC predictor, including DVEC [36], BEKK [96], FF-MGARCH [304],

O-GARCH [4], and GO-GARCH [299], to name some. However, these predictors have been shown to

be hard to fit and can yield inconsistent estimates [57]. (These inconsistencies may not have much

practical impact.) For detailed reviews of MGARCH predictors we refer the reader to [285, 20].

2.2.4 DCC GARCH

The second line of extensions of GARCH to vector time series models conditional covariances through

separate estimates of conditional variances and correlations [92, 98]. In [37] Bollerslev introduced the

constant conditional correlation predictor (CCC) where the individual asset volatilities are modeled

as separate GARCH processes, while the correlation matrix is assumed constant and equal to the

unconditional correlation matrix. This predictor was later extended to the dynamic conditional

correlation (DCC) predictor where the correlation matrix is allowed to change over time [92]. The

DCC model has the form

⌃t = DtRtDt,

where Dt is the diagonal matrix of standard deviations, i.e., (Dt)ii = (⌃t)
1/2
ii

, and Rt is the correlation

matrix associated with ⌃t.

DCC GARCH models the diagonal elements of Dt as separate univariate GARCH processes as

described above. The correlation matrix Rt is then modeled as a constrained multivariate GARCH

(MGARCH) process, e.g., as

Rt = diag(diag(Qt))
�1/2Qt diag(diag(Qt))

�1/2,

Qt = Q̄(1� a� b) + ar̃tr̃
T

t
+ bQt�1,

where Q̄ is the unconditional correlation matrix, a and b are the MGARCH parameters, and r̃t are
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the volatility adjusted returns defined as

r̃t = D�1
t

rt.

The parameters can be estimated in two steps via (quasi) maximum likelihood, but requires solving

non-convex optimization problems [92]. This predictor has become a popular choice amongst

MGARCH predictors due to its interpretability. Variants of the DCC predictor are widely used in

finance, where it is also often used in combination with EWMA estimates. Conditional correlation

predictors are easier to estimate than other multivariate GARCH predictors, and their parameters

are more interpretable.

Iterated covariance estimation. DCC, which separately estimates the volatilities and correlations,

is closely related to the idea of iterated covariance predictors [18]. Iterated covariance predictors

estimate the covariance matrix in multiple iterations. In a two-step iteration we first form a first

covariance estimate ⌃̂(1)
t

of the returns rt, at each time t, and form the whitened returns

r̃t =
⇣
⌃̂(1)

t

⌘�1/2
rt.

In the second iteration we form the covariance estimate ⌃̂(2)
t

of the whitened returns r̃t. The final

covariance estimate (of the returns rt) is then formed as

⌃̂t =
⇣
⌃̂(1)

t

⌘1/2
⌃̂(2)

t

⇣
⌃̂(1)

t

⌘1/2
.

This procedure can be iterated further, and has been shown empirically to improve the quality of the

covariance estimate; see [18] for details. In DCC, ⌃̂(1) is diagonal and models the volatilities; ⌃̂(2) is

a correlation matrix.

2.2.5 Iterated EWMA

Iterated EWMA (IEWMA) was proposed by [92] and is analogous to DCC GARCH but with EWMA

estimates of the volatilities and correlations instead of GARCH. Engle proposed IEWMA as an

e�cient alternative to the DCC GARCH predictor, although he did not refer to it as IEWMA; we use

this term to emphasize its connection to iterated whitening, as proposed in [18]. Specifically, IEWMA

can be viewed as an iterated whitener, where we first use a diagonal whitener (which estimates the

volatilities) and then a full matrix whitener (which estimates the correlations). This is analogous to

the two-step iterated covariance predictor where ⌃̂(1)
t

is the diagonal matrix of squared volatility

estimates and ⌃̂(2)
t

estimates the correlation matrix of the volatility adjusted returns.

First we form an estimate of the volatilities �̂t = diag(⌃̂t)1/2 using EWMA predictors for each

asset. We denote the half-life of these volatility estimates as Hvol. We then form the marginally
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standardized returns as

r̃t = D̂�1
t

rt, (2.3)

where D̂t = diag(�̂t). These vectors should have entries with standard deviation near one. It is

common practice to winsorize the standardized returns; a good rule of thumb is to clip r̃t at ±4.2,

which corresponds to clipping rt at ±4.2�̂t.

Then we form a EWMA estimate of the covariance of r̃t, which we denote as R̃t, using half-life

Hcor for this EWMA estimate. (We use the superscript ‘cor’ since the diagonal entries of R̃t should

be near one, so R̃t is close to a correlation matrix.) From R̃t we form its associated correlation

matrix R̂t, i.e., we scale R̃t on the left and right by a diagonal matrix with entries (R̃t)
�1/2
ii

. Since

the diagonal entries of R̃t should be near one, R̃t and R̂t are not too di↵erent.

Our IEWMA covariance predictor is

⌃̂t = D̂tR̂tD̂t, t = 2, 3, . . . .

This is the covariance predictor proposed in [92]; replacing R̂t with R̃t we obtain the iterated whitener

proposed by Barratt and Boyd in [18]. As mentioned above, they are typically quite close.

It is common to choose the volatility half-life Hvol to be smaller than the correlation half-life

Hcor. The intuition here is that we can average over fewer past samples when we predict the n

volatilities �̂t, but need more past samples to reliably estimate the n(n� 1)/2 o↵-diagonal entries

of R̂t. Empirical studies on real return data confirm that choosing a faster volatility half-life than

correlation half-life yields better estimates.

2.3 Combined multiple iterated EWMAs

In this section we introduce a novel covariance predictor, which we call combined multiple iterated

EWMAs, for which we use the acronym CM-IEWMA. The CM-IEWMA predictor is constructed

from a modest number of IEWMA predictors, with di↵erent pairs of half-lives, which are combined

using dynamically varying weights that are based on recent performance.

The CM-IEWMA predictor is motivated by the idea that di↵erent pairs of half-lives may work

better for di↵erent market conditions. For example, short half-lives perform better in volatile markets,

while long half-lives perform better for calm markets where conditions are changing slowly.

2.3.1 Dynamically weighted prediction combiner

We first describe the idea in a general setting. We start with K di↵erent covariance predictors,

denoted ⌃̂(k)
t

, k = 1, . . . ,K. These could be any of the predictors described above, or predictors of

the same type with di↵erent parameter values, e.g., half-lives (for EWMA) or pairs of half-lives (for

IEWMA). In some contexts these di↵erent predictors are referred to as a set of K experts [141, 168].
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We denote the Cholesky factorizations of the associated precision matrices (⌃̂(k)
t

)�1 as L̂(k)
t

, i.e.,

⇣
⌃̂(k)

t

⌘�1
= L̂(k)

t
(L̂(k)

t
)T , k = 1, . . . ,K,

where L̂(k)
t

are lower triangular with positive diagonal entries. We will combine these Cholesky

factors with nonnegative weights ⇡1, . . . ,⇡K that sum to one, to obtain

L̂t =
KX

k=1

⇡kL̂
(k)
t

. (2.4)

From this we recover the weighted combined predictor

⌃̂t =
⇣
L̂tL̂

T

t

⌘�1
. (2.5)

We will see below why we combine the Cholesky factors of the precision matrices, and not the

covariance or precision matrices themselves.

2.3.2 Choosing the weights via convex optimization

The log-likelihood (2.1) can be expressed in terms of the Cholesky factor of the precision matrix L̂t

as

lt(⌃̂t) = �(n/2) log(2⇡) +
nX

i=1

log L̂t,ii � (1/2)kL̂T

t
rtk22,

where k · k2 denotes the Euclidean norm. This is a concave function of the weights ⇡ 2 RK

+ [48].

We choose the weights at time t as the solution of the convex optimization problem

maximize
P

N

j=1

✓P
n

i=1 log L̂t�j,ii � (1/2)kL̂T

t�j
rt�jk22

◆

subject to L̂⌧ =
P

K

j=1 ⇡jL̂
(j)
⌧ , ⌧ = t� 1, . . . , t�N

⇡ � 0, 1T⇡ = 1,

(2.6)

with variables ⇡1, . . . ,⇡K , where N is the look-back, 1 denotes the vector with entries one, and �
between vectors means entrywise. In words: we choose the (mixture) weights in each period so as to

maximize the average log-likelihood of the combined prediction over the trailing N periods. The

problem (2.6) is convex, and can be solved very quickly and reliably by many methods [48]. The

covariance predictor is then recovered using (2.4) and (2.5).

The look-back N is a parameter that can be adjusted to give good performance. Numerical

experiments suggest that the predictor is not very sensitive to the choice of N , and that a choice

N = 10 seems to work well for asset universes up to a few hundred assets.

We mention several extensions of the weight problem (2.6). First, we can add one prediction
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which is diagonal, using any estimates of the volatilities (including constant). This gives us shrinkage,

automatically chosen. We can also add a constraint or objective term that encourages the weights to

vary smoothly over time, as discussed more in section 2.9.

The CM-IEWMA predictor is a special case of the dynamically weighted prediction combiner

described above, where the K predictions are each IEWMA, with di↵erent pairs of half-lives Hvol

and Hcor.

2.4 Evaluating covariance predictors

There are several ways of evaluating a covariance predictor, often divided into two categories, direct

and indirect [250], [7, §7]. Direct methods use a proxy for the true covariance matrix to evaluate the

predictor, while indirect methods use the covariance predictor on tasks of interest, such as portfolio

construction or portfolio tracking.

Popular direct methods are the Mincer-Zarnowitz (MZ) regression and its variants, based on

statistical tests of the regression coe�cients of a predicted variable on an observed variable (or in

the case of variance and covariance, a proxy for the observed variable) [230, 292]. Direct methods

also include the comparison between di↵erent predictors in terms of some loss function. Common

loss functions are the mean squared error (MSE) and quasi-likelihood (QLIKE) [249, 250]. To select

good models, the model confidence set (MCS) is usually used [139], or the Ledoit–Wolf test [187] to

compare Sharpe ratios.

Indirect methods use applications to rank covariance predictors, and include the minimum variance

and mean-variance portfolios, as well as portfolio tracking tasks.

The di↵erence in performance between various predictors can also be evaluated using statistical

tests. For a more detailed discussion of both direct and indirect methods, we refer the reader to [250].

In this section we discuss several evaluation metrics for covariance predictors. The first three

metrics are direct, and include the mean squared error and two metrics based on a statistical measure,

the log-likelihood under a Gaussian distribution. The remaining metrics judge a covariance predictor

by the performance of a portfolio using a method that depends on a covariance matrix. We are

mainly interested in illustrating how simple methods can perform just as well as or better than more

complex ones, rather than finding optimal predictors in a statistical sense. Therefore we look at the

absolute performance of covariance predictors on these metrics.

2.4.1 Mean squared error

The mean squared error (MSE) is a common metric for evaluating a covariance predictor ⌃̂t, defined

as
1

T

TX

t=1

krtrTt � ⌃̂tk2F ,



CHAPTER 2. A SIMPLE COVARIANCE PREDICTOR FOR FINANCIAL RETURNS 12

i.e., the average squared Frobenius norm of the di↵erence between the realized (rank one) covariance

matrix rtrTt and the covariance predictor ⌃̂t. Lower values of MSE are better. One variation on the

MSE error assumes that ⌃̂t is constant over some number of time periods and replaces the rank one

realized covariance rtrTt with an average of the rank one terms over the periods, i.e., the realized

empirical covariance.

2.4.2 Log-likelihood

A natural way of judging a covariance predictor is via its average log-likelihood on realized returns,

1

2T

TX

t=1

⇣
� n log(2⇡)� log det ⌃̂t � rT

t
⌃̂�1

t
rt
⌘
,

with larger values being better. This metric can be used to compare di↵erent predictors.

To understand the performance of a covariance predictor over time and changing market conditions,

we can examine the average log-likelihood over periods such as quarters, and look at the distribution

of quarterly average log-likelihood values. We are particularly interested in poor, i.e., low values.

2.4.3 Log-likelihood regret

Recall that the best constant predictor, in terms of the log-likelihood, is the empirical sample

covariance

⌃emp =
1

T

TX

t=1

rtr
T

t
,

with value
1

2

�
� n(log(2⇡) + 1)� log det⌃emp

�
.

For any other constant ⌃ 2 Sn

++, the log-likelihood is lower than the log-likelihood of ⌃emp. We define

the average log-likelihood regret as the average log-likelihood of the (constant) empirical covariance,

minus the average log-likelihood of the covariance predictor. The regret is a measure of how much the

covariance predictor ⌃̂t, t = 1, . . . , T , underperforms the best possible constant covariance predictor

(i.e., the sample covariance matrix). The term regret comes from the field of online optimization; see,

e.g., [321, 233, 144, 143].

We want our covariance predictor to have small regret. The regret is typically positive, but it can

be negative, i.e., our time-varying covariance can have higher log-likelihood than the best constant

one. The regret is not any more useful than the log-likelihood when comparing predictors over one

time interval, since it simply adds a constant and switches the sign. But it is interesting when we

compute the regret over multiple periods, like months or quarters. The regret over multiple quarters

removes the e↵ect of the log-likelihood of the empirical covariance varying due to changing market

conditions, and allows us to assess how well the covariance predictor adapts.
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2.4.4 Portfolio performance

We can also judge the performance of a covariance predictor by the investment performance of portfolio

construction methods that depend on the estimated covariance matrix. As with log-likelihood or

log-likelihood regret, we can examine the portfolio performance in periods such as quarters, to see

how evenly the performance is spread over time.

One obvious metric of interest is how close the ex-ante and realized portfolio volatilities are. The

metrics described above, MSE, log-likelihood, and log-likelihood regret, are agnostic to the portfolio;

with specific real portfolios we can see how well our covariance predictors predict portfolio volatility.

We will assess a covariance predictor using five simple portfolio construction methods. The first is

an equally weighted (or 1/n) portfolio, which does not by itself depend on the covariance, but does

when we adjust it with cash to achieve a given ex-ante risk. The second, third, and fourth portfolios

depend only on the covariance matrix. They are minimum variance, risk parity, and maximum

diversification portfolios. For an in depth discussion of these portfolios, see [53]. The last portfolio

we consider is a mean-variance portfolio, using a very simple mean estimator.

For each portfolio we look at four metrics: realized return, volatility, Sharpe ratio, and maximum

drawdown. The returns, volatilities, and Sharpe ratios are reported in annualized values. The Sharpe

ratio is defined as the ratio of the excess return (over the risk-free rate), divided by the volatility of

the excess return,
1
T

P
T

⌧=1(r
p

t
� rrf

t
)

⇣
1
T

P
T

⌧=1

�
rp
t
� 1

T

P
T

⌧=1 r
p

t

�2⌘1/2
,

where rp
t
and rrf

t
are the portfolio and risk-free returns at time t. The maximum drawdown is defined

as

max
1t1<t2T

✓
1�

V p

t2

V p

t1

◆
,

where

V p

t
= V0(1 + rp1)(1 + rp2) · · · (1 + rp

t
)

is the portfolio value at time t (with returns re-invested), starting with value V0 > 0.

In addition to portfolio performance, we can also examine how well the covariance prediction

predicts the portfolio volatility. We compare the realized or ex-post portfolio volatility

 
1

T

TX

t=1

(rT
t
wt)

2

!1/2

,

to the predicted or ex-ante portfolio volatility

 
1

T

TX

t=1

wT

t
⌃̂twt

!1/2

,
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where wt 2 Rn are the portfolio weights. This directly measures the ability of the estimated

covariance matrix to predict portfolio risk.

Equal weight portfolio. We take the equal weight or 1/n portfolio with w = (1/n)1. This

portfolio does not depend on the covariance ⌃̂t, but when we mix it with cash, as described below, it

will.

Minimum variance portfolio. The (constrained) minimum variance portfolio is the solution of

the convex optimization problem

minimize wT ⌃̂tw

subject to wT1 = 1, kwk1  Lmax, wmin  w  wmax

with variable w 2 Rn, where Lmax � 1 is a leverage limit, and wmin and wmax are lower and upper

bounds on the weights, respectively.

Risk-parity portfolio. The portfolio return volatility �(w) = (wT ⌃̂tw)1/2 can be broken down

into a sum of volatilities (risks) associated with each asset as

@ log �(w)

@wi

=
@�(w)

�(w)

wi

@wi

=
wi(⌃̂tw)i

wT ⌃̂tw
, i = 1, . . . , n.

The risk parity portfolio is the one for which these volatility attributions are equal [263]. This

portfolio can be found by solving the convex optimization problem [52],

minimize (1/2)xT ⌃̂tx�
nX

i=1

(1/n) log xi,

with variable x, and then taking w = x?/(1Tx?).

Maximum diversification portfolio. The diversification ratio of a long-only portfolio (i.e., one

with w � 0) is defined as

D(w) =
�̂T

t
w

(wT ⌃̂tw)1/2
.

The diversification ratio tells us how much higher the portfolio volatility would be if all assets were

perfectly correlated. The maximum diversification portfolio is the portfolio w that maximizes D(w),

possibly subject to constraints [66]. Like the risk-parity portfolio, the maximum diversification

portfolio can be found via convex optimization. We let x? denote the solution of the convex
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optimization problem [52]

minimize xT ⌃̂tx

subject to �̂T

t
x = 1, x � 0,

with variable x. The maximum diversification portfolio is w = x?/1Tx?.

Volatility control with cash. We mix each of the four portfolios described above with cash to

achieve a target value of ex-ante volatility �tar. To do this we start with the portfolio weight vector

wt, and compute its ex-ante volatility �t = (wT

t
⌃̂twt)1/2. Then we add a cash component so that the

overall ex-ante volatility equals our target, i.e., we use the (n+ 1) weights (with the last component

denoting cash) "
✓wt

(1� ✓)

#
, ✓ =

�tar

�t

.

This portfolio will have ex-ante volatility �tar. Note that the cash weight can be either positive

(when it dilutes the portfolio volatility) or negative (when it leverages the portfolio volatility to the

desired level). The target volatility �tar should be chosen so as to avoid portfolios that are either too

diluted or too leveraged.

Mean variance portfolio. The last portfolio we consider is a basic mean-variance portfolio,

defined as the solution of the convex optimization problem

maximize r̂T
t
w

subject to k⌃̂1/2
t

wk2  �tar

1Tw + c = 1, kwk1  Lmax,

wmin  w  wmax, cmin  c  cmax

with variable w, where r̂t is the predicted mean return vector at time t. The vector w gives the

weights of the non-cash assets and c denotes the cash weight. The non-cash and cash weights are

limited by wmin, wmax and cmin, cmax, respectively. This portfolio does not need cash dilution, since

it includes cash in its construction. (If �tar is chosen appropriately, it will have ex-ante risk �tar.)

The mean-variance portfolio depends not only on a covariance estimate, but also a return estimate.

For this we use one of the simplest possible return estimates, a EWMA of the realized returns.

2.5 Data sets and experimental setup

We illustrate our method on three di↵erent data sets: a set of 49 industry portfolios, a set of 25

stocks, and a set of 5 factor returns, each augmented with cash (with the historical risk-free interest

rate). For each data set we show results for six covariance predictors. Everything needed to reproduce

the results is available online at
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Table 2.1: Industry portfolios.

Agriculture Food products
Candy & soda Beer & liquor
Tobacco products Recreation
Entertainment Printing and publishing
Consumer goods Apparel
Healthcare Medical equipment
Pharmaceutical products Chemicals
Rubber and plastic products Textiles
Construction materials Construction
Steel works etc. Fabricated products
Machinery Electrical equipment
Automobiles and trucks Aircraft
Shipbuilding, railroad equipment Defense
Precious metals Non-metallic and industrial metal mining
Coal Petroleum and natural gas
Utilities Communication
Personal services Business services
Computers Computer software
Electronic equipment Measuring and control equipment
Business supplies Shipping containers
Transportation Wholesale
Retail Restaurants, hotels, motels
Banking Insurance
Real estate Trading
Other

https://github.com/cvxgrp/cov_pred_finance.

2.5.1 Data sets

Industry portfolios. The first data set consists of the daily returns of a universe of n = 49 daily

traded industry portfolios, shown in table 2.1, along with cash. The data set spans July 1st 1969 to

December 30th, 2022, for a total of 13496 (trading) days. The data was obtained from the Kenneth

French Data Library [110].

Stocks. The second data set consists of the daily returns of n = 25 stocks and cash. The stocks

were chosen to be the 25 largest stocks in the S&P 500 at the beginning of 2010, listed in table 2.2.

This data set spans January 4th 2010 to December 30th, 2022, for a total of 3272 (trading) days.

The stock data was attained through the Wharton Research Data Services (WRDS) portal [308].

Factor returns. The third data set consists of daily returns of the five Fama-French factors taken

from the Kenneth French Data Library [110], shown in table 2.3. The data set spans July 1st 1963

to December 30th, 2022, for a total of 14979 (trading) days.

https://github.com/cvxgrp/cov_pred_finance
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Table 2.2: List of companies and their tickers.

Ticker Company Name

XOM Exxon Mobil
WMT Walmart
AAPL Apple Inc.
PG Procter & Gamble
JNJ Johnson & Johnson
CHL China Mobile
IBM IBM
SBC AT&T
GE General Electric
CHV Chevron
PFE Pfizer
NOB Noble
NCB NCR
KO Coca-Cola
ORCL Oracle Corporation
HWP Hewlett-Packard
INTC Intel Corporation
MRK Merck & Co.
PEP PepsiCo
BEL Becton, Dickinson and Company
ABT Abbott Laboratories
SLB Schlumberger
P Pandora Media
PA Pan American Silver
MCD McDonald’s

Table 2.3: The five Fama-French factors.

Factor Description

MKT-Rf market excess return over risk-free rate
SMB small stocks minus big stocks
HML high book-to-market stocks minus low book-to-market stocks
RMW stocks with high operating profitability minus stocks with low

operating profitability
CMA stocks with conservative investment policies minus stocks with

aggressive investment policies
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(a) Industry data set.

(b) Stock data set.

(c) Factor data set.

Figure 2.1: Cumulative returns of five assets from each data set.

Cumulative returns. In figure 2.1 we show the cumulative returns of the five factors, and the

cumulative returns of five assets chosen from each of the industry and stock data sets.
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Table 2.4: Half-lives for CM-IEWMA predictors, given as Hvol/Hcor, in days.

Data set Half-lives

Industries 21/63 63/125 125/250 250/500 500/1000
Stocks 10/21 21/63 63/125 125/250 250/500
Factors 5/10 10/21 21/63 63/125 125/250

2.5.2 Six covariance predictors

For each data set we evaluate six covariance predictors, described below.

• Rolling window estimates with 500-, 250-, and, 125-day windows for the industry, stock, and

factor data sets, respectively, denoted RW in plots and tables.

• EWMA predictors with 250-, 125-, and, 63-day half-lives, for the industry, stock, and factor

data sets, respectively, denoted EWMA.

• IEWMA predictors with half-lives (in days) Hvol/Hcor of 125/250, 63/125, and 21/63 for the

three data sets, respectively, denoted IEWMA.

• DCC GARCH predictor, denoted MGARCH, with parameters re-estimated annually using the

rmgarch package in R [118].

• CM-IEWMA predictor with K = 5 IEWMA predictors and a lookback of N = 10 days, with

half-lives shown in table 2.4. For each of the fastest IEWMA predictors we regularize the

covariance estimate by increasing the diagonal entries by 5%.

• Prescient predictor, i.e., the empirical covariance for the quarter the day is in. This predic-

tor maximizes log-likelihood for each quarter, and achieves zero regret. It is of course not

implementable, and meant only to show a bound on performance with which to compare our

implementable predictors.

All the parameters above (e.g., half-lives) are chosen as reasonable values that give good overall

performance for each predictor. The results are not sensitive to these choices.

For our experiments we use the first two years (500 data points) of each data set to fit the

MGARCH predictor and initialize the other predictors. (After this initial MGARCH fit, we re-

estimate its parameters annually.) Hence, the evaluation period for our experiments below ranges

from June 24th 1971 to December 30th, 2022, for the industry portfolios, from December 28th, 2011,

to December 30th, 2022, for the stock portfolios, and from June 28th 1965 to December 30, 2022, for

the factor portfolios.
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2.6 Results

2.6.1 CM-IEWMA component weights

Figure 2.2 shows the weights for each of the five components of the CM-IEWMA predictors, averaged

yearly, for the three data sets.

We can see how the predictor adapts the weights depending on market conditions. Substantial

weight is put on the slower (longer half-life) IEWMAs most years. During and following volatile

periods like the 2000 dot.com bubble or 2008 market crash, we see a big increase in weight on the

faster IEWMAs. We can illustrate these changes in weights in response to market conditions via the

e↵ective half-life of the CM-IEWMA, defined as the weighted average of the five (longer) half-lives,

shown in figure 2.3, averaged yearly.



CHAPTER 2. A SIMPLE COVARIANCE PREDICTOR FOR FINANCIAL RETURNS 21

(a) Industry data set.

(b) Stock data set.

(c) Factor data set.

Figure 2.2: Weights of the various IEWMA components in the CM-IEWMA predictors on three
data sets. The IEWMA components are represented as Hvol/Hcor for the volatility and correlation
half-lives, respectively.
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(a) Industry data set.

(b) Stock data set.

(c) Factor data set.

Figure 2.3: E↵ective half-lives of the CM-IEWMA predictor on three data sets.
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2.6.2 Mean squared error

Table 2.5 shows the average, standard deviation, and maximum of the MSE computed over distinct

quarters for the six covariance predictors on the three data sets (with lower being better for all three

metrics).

CM-IEWMA and MGARCH do better than the other predictors on all metrics over all data sets,

with MGARCH doing slightly better on the industry data and CM-IEWMA slightly better on the

stock data. Interestingly, on the factor data set, the CM-IEWMA predictor does better than the

prescient predictor.

2.6.3 Log-likelihood and log-likelihood regret

Figure 2.4 shows the average quarterly log-likelihood for the di↵erent covariance predictors over

the evaluation period. Not surprisingly, the prescient predictor does substantially better than the

others. The di↵erent predictors follow similar trends, with even the prescient predictor experiencing

a drop in log-likelihood during market turbulence. Close inspection shows that the CM-IEWMA and

MGARCH predictors almost always have the highest log-likelihood in each quarter.

Figure 2.5 shows the average quarterly log-likelihood regret for the di↵erent covariance predictors

over the evaluation period. Clearly, CM-IEWMA and MGARCH perform best in volatile markets.

Figure 2.6 illustrates the di↵erence between CM-IEWMA and MGARCH. As seen, CM-IEWMA

consistently has lower regret on the industry and stock data sets, while they perform similar on the

factor data. More precisely, CM-IEWMA has lower regret than MGARCH in 87% of the quarters for

the industry data, 71% for the stock data, and 51% for the factor data.

Table 2.6 illustrates the di↵erences in regret further, by showing the average, standard deviation,

and the maximum of the average quarterly regret. As we can see, the average quarterly regret is

lower for CM-IEWMA than for the other predictors. The regret is also more stable for CM-IEWMA,

as the standard deviation is lower. Finally, the maximum average quarterly regret is also lower for

CM-IEWMA than for the other predictors. These results are most prominent on the industry and

stock data, while MGARCH does similar on the factor data.

Figure 2.7 gives a final illustration of these results, by showing the cumulative distribution

functions of the average quarterly regret for the di↵erent covariance predictors.

Clearly, CM-IEWMA has the lowest regret on the industry and stock data set, and MGARCH

does similar on the factor data.
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Table 2.5: Metrics on the MSE, computed over distinct quarters, for six covariance predictors on
three data sets.

Predictor Average/10�4 Std. Dev./10�3 Max/10�2

RW 7.6 4.0 3.9
EWMA 7.5 4.0 3.9
IEWMA 7.4 3.9 3.9
MGARCH 6.8 3.6 3.8
CM-IEWMA 6.9 3.6 3.8

Prescient 6.6 3.5 3.7

(a) Industry data set.

Predictor Average/10�7 Std. Dev./10�6 Max/10�5

RW 3.4 1.9 2.4
EWMA 3.4 1.9 2.4
IEWMA 3.3 1.8 2.4
MGARCH 3.2 1.8 2.4
CM-IEWMA 3.2 1.8 2.4

Prescient 3.1 1.8 2.3

(b) Stock data set.

Predictor Average/10�4 Std. Dev./10�3 Max/10�2

RW 3.4 1.6 1.1
EWMA 3.3 1.6 1.1
IEWMA 3.2 1.6 1.1
MGARCH 3.0 1.4 1.0
CM-IEWMA 2.9 1.4 0.9

Prescient 3.0 1.5 1.0

(c) Factor data set.
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(a) Industry data set.

(b) Stock data set.

(c) Factor data set.

Figure 2.4: The log-likelihood, averaged quarterly, for six covariance predictors and three data sets.



CHAPTER 2. A SIMPLE COVARIANCE PREDICTOR FOR FINANCIAL RETURNS 26

(a) Industry data set.

(b) Stock data set.

(c) Factor data set.

Figure 2.5: The regret, averaged quarterly, for five covariance predictors over the evaluation periods
for three data sets.
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(a) Industry data set.

(b) Stock data set.

(c) Factor data set.

Figure 2.6: The regret for MGARCH and CM-IEWMA, averaged quarterly over the evaluation
periods for three data sets.
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Table 2.6: Metrics on the average quarterly regret for six covariance predictors on three data sets.

Predictor Average Std. dev. Max

RW 20.4 6.9 72.8
EWMA 19.4 6.2 70.1
IEWMA 18.2 3.6 41.4
MGARCH 17.9 3.0 32.8
CM-IEWMA 16.9 2.4 28.4

PRESCIENT 0.0 0.0 0.0

(a) Industry data set.

Predictor Average Std. dev. Max

RW 7.0 4.8 37.0
EWMA 6.2 3.8 30.2
IEWMA 5.8 1.6 13.6
MGARCH 5.6 1.0 7.8
CM-IEWMA 5.3 1.0 7.6

PRESCIENT 0.0 0.0 0.0

(b) Stock data set.

Predictor Average Std. dev. Max

RW 0.6 0.9 12.2
EWMA 0.6 0.7 9.5
IEWMA 0.4 0.3 4.1
MGARCH 0.4 0.3 3.1
CM-IEWMA 0.4 0.3 2.9

PRESCIENT 0.0 0.0 0.0

(c) Factor data set.
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(a) Industry data set.

(b) Stock data set.

(c) Factor data set.

Figure 2.7: Cumulative distribution functions of average quarterly regret for five covariance predictors
on three data sets.
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2.6.4 Portfolio performance

In this section we evaluate the covariance predictors on the portfolios described in §2.4.4. In

the minimum variance and mean-variance portfolios, we use Lmax = 1.6 (which corresponds to

130:30 long:short), wmin = �0.1 and wmax = 0.15 for the industry and stock return portfolios, and

wmin = �0.3 and wmax = 0.4 for the factor return portfolio. We use target (annualized) volatilities

of 5%, 10%, and 2% for the industry, stock, and factor return portfolios, respectively.

For the mean-variance portfolio, our estimated returns are EWMAs of the trailing realized returns.

For the industry and stock data we use 250-day half-life EWMAs, winsorized at the 40th and 60th

percentiles (cross-sectionally), and for the factor data a 63-day half-life EWMA (not winsorized).

Equal weight portfolio. Table 2.7 shows the metrics for the equal weight portfolio. All predictors

track the volatility targets well. MGARCH attains the highest Sharpe ratios, although the results are

very close. The drawdowns are also very similar for all predictors, but MGARCH and CM-IEWMA

seem slightly better than the rest.

Minimum variance portfolio. Table 2.8 shows the metrics for the minimum variance portfolio.

For the factor data set, MGARCH does best. On the industry and stock data sets, the three EWMA-

based predictors track the volatility target fairly well, while RW and MGARCH underestimate

volatility. CM-IEWMA and MGARCH both attain a high Sharpe ratio. However, we note that

the high Sharpe ratio for MGARCH, as compared to the other predictors, is a consequence of the

high volatility. Finally, CM-IEWMA seems to consistently attain a lower drawdown than the other

predictors, although the other EWMA-based approaches also do well.

To illustrate how the minimum variance trading strategy has evolved over time, we show the

yearly annualized Sharpe ratios for the CM-IEWMA predictor in figure 2.8. We can see that the

Sharpe ratio achieved by the minimum variance portfolio decreases over time for the industry and

stock data sets, with a small upward trend for the factor data set.

Risk parity portfolio. The results for the risk-parity portfolio are shown in table 2.9. Overall the

results are similar for the various predictors. There is very little that separates the predictors on the

industry data set. On the stock data, CM-IEWMA and MGARCH attain the highest Sharpe ratios

and lowest drawdowns. On the factor data set, MGARCH has the best overall performance.

Maximum diversification portfolio. The maximum diversification portfolio results are illustrated

in table 2.10. On the industry and stock data sets, CM-IEWMA and MGARCH do best in terms of

Sharpe ratio, drawdown, and tracking the volatility target. On the factor data set, MGARCH does

best overall.
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Table 2.7: Metrics for the equal weight portfolio performance for six covariance predictors over the
evaluation periods on three data sets.

Predictor Return/% Risk/% Sharpe Drawdown/%

RW 2.2 5.4 0.4 16
EWMA 2.2 5.1 0.4 15
IEWMA 2.2 5.1 0.4 15
MGARCH 2.4 5.1 0.5 14
CM-IEWMA 2.3 5.0 0.5 13

PRESCIENT 4.3 4.9 0.9 8

(a) Industry data set.

Predictor Return/% Risk/% Sharpe Drawdown/%

RW 6.8 10.6 0.6 23
EWMA 6.4 10.0 0.6 21
IEWMA 6.7 10.1 0.7 20
MGARCH 7.2 9.4 0.8 15
CM-IEWMA 6.8 9.6 0.7 17

PRESCIENT 12.8 9.9 1.3 10

(b) Stock data set.

Predictor Return/% Risk/% Sharpe Drawdown/%

RW 2.9 2.1 1.4 15
EWMA 2.9 2.0 1.4 15
IEWMA 3.0 2.0 1.5 14
MGARCH 3.2 2.0 1.6 12
CM-IEWMA 2.9 2.1 1.4 15

PRESCIENT 3.3 2.0 1.7 12

(c) Factor data set.



CHAPTER 2. A SIMPLE COVARIANCE PREDICTOR FOR FINANCIAL RETURNS 32

Table 2.8: Metrics for the minimum variance portfolio performance for six covariance predictors over
the evaluation periods on three data sets.

Predictor Return/% Risk/% Sharpe Drawdown/%

RW 3.1 5.8 0.5 23
EWMA 3.1 5.4 0.6 19
IEWMA 3.3 5.5 0.6 19
MGARCH 4.3 6.1 0.7 20
CM-IEWMA 3.5 5.3 0.7 20

PRESCIENT 3.8 5.0 0.8 13

(a) Industry data set.

Predictor Return/% Risk/% Sharpe Drawdown/%

RW 9.7 12.0 0.8 23
EWMA 8.9 11.1 0.8 20
IEWMA 9.7 11.3 0.9 19
MGARCH 11.3 12.3 0.9 18
CM-IEWMA 9.1 11.0 0.8 15

PRESCIENT 15.6 10.0 1.6 10

(b) Stock data set.

Predictor Return/% Risk/% Sharpe Drawdown/%

RW 1.3 2.2 0.6 20
EWMA 1.4 2.1 0.7 18
IEWMA 1.2 2.1 0.6 17
MGARCH 1.8 2.1 0.9 15
CM-IEWMA 1.2 2.1 0.5 21

PRESCIENT 1.0 2.0 0.5 22

(c) Factor data set.
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(a) Industry data.

(b) Stock data set.

(c) Factor data set.

Figure 2.8: Yearly annualized Sharpe ratios together with the linear trend for minimum variance
portfolios on three data sets.
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Table 2.9: Metrics for the risk parity portfolio performance for six covariance predictors over the
evaluation periods on three data sets.

Predictor Return/% Risk/% Sharpe Drawdown/%

RW 2.4 5.4 0.5 16
EWMA 2.4 5.1 0.5 15
IEWMA 2.5 5.1 0.5 14
MGARCH 2.7 5.1 0.5 14
CM-IEWMA 2.5 5.0 0.5 13

PRESCIENT 4.7 4.9 1.0 8

(a) Industry data set.

Predictor Return/% Risk/% Sharpe Drawdown/%

RW 7.4 10.8 0.7 22
EWMA 6.8 10.1 0.7 21
IEWMA 7.2 10.2 0.7 20
MGARCH 7.9 9.7 0.8 15
CM-IEWMA 7.4 9.7 0.8 16

PRESCIENT 14.3 9.9 1.5 9

(b) Stock data set.

Predictor Return/% Risk/% Sharpe Drawdown/%

RW 1.6 2.1 0.7 19
EWMA 1.7 2.1 0.8 18
IEWMA 1.6 2.1 0.8 18
MGARCH 2.0 2.1 1.0 16
CM-IEWMA 1.5 2.1 0.7 17

PRESCIENT 1.4 2.0 0.7 17

(c) Factor data set.
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Table 2.10: Metrics for the maximum diversification portfolio performance for six covariance predictors
over the evaluation periods on three data sets.

Predictor Return/% Risk/% Sharpe Drawdown/%

RW 2.1 5.5 0.4 16
EWMA 2.1 5.1 0.4 16
IEWMA 2.2 5.2 0.4 14
MGARCH 2.5 5.1 0.5 12
CM-IEWMA 2.3 5.0 0.5 12

PRESCIENT 3.8 5.0 0.8 10

(a) Industry data set.

Predictor Return/% Risk/% Sharpe Drawdown/%

RW 8.4 11.2 0.8 22
EWMA 7.9 10.4 0.8 21
IEWMA 8.2 10.4 0.8 20
MGARCH 10.0 9.8 1.0 15
CM-IEWMA 8.8 10.0 0.9 16

PRESCIENT 13.5 9.9 1.4 11

(b) Stock data set.

Predictor Return/% Risk/% Sharpe Drawdown/%

RW 1.4 2.2 0.7 19
EWMA 1.5 2.1 0.7 19
IEWMA 1.4 2.1 0.7 19
MGARCH 2.0 2.1 1.0 16
CM-IEWMA 1.4 2.1 0.7 18

PRESCIENT 1.3 2.0 0.7 18

(c) Factor data set.
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Mean variance portfolio. The results for the mean-variance portfolio are given in table 2.11. On

the industry data set all predictors underestimate volatility. The results are similar across predictors,

with CM-IEWMA and MGARCH performing slightly better than the rest in terms of Sharpe ratio

and drawdown. On the stock data set, CM-IEWMA seems to do best overall. On the factor data set,

the results are almost identical between predictors.

Since we use simple EWMA return predictors, we can expect the mean variance portfolio

performance to vary over time. Intuitively it should be better on historical data than more recent

data. To illustrate this, figure 2.9 shows the yearly annualized Sharpe ratios for the three portfolios.

There is a clear downward trend in the Sharpe ratios for the industry and factor data sets,

illustrating the di�culty of predicting returns in recent years. This can be compared to the minimum

variance portfolios (figure 2.8) that have a more stable performance over time, and notably do not

depend on a mean estimate.
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Table 2.11: Metrics for the mean variance portfolio performance for six covariance predictors over
the evaluation periods on three data sets.

Predictor Return/% Risk/% Sharpe Drawdown/%

RW 5.6 6.2 0.9 16
EWMA 5.6 5.8 1.0 15
IEWMA 5.9 5.7 1.0 14
MGARCH 6.7 6.4 1.0 14
CM-IEWMA 6.1 5.6 1.1 13

PRESCIENT 4.6 5.0 0.9 10

(a) Industry data set.

Predictor Return/% Risk/% Sharpe Drawdown/%

RW 6.1 11.9 0.5 26
EWMA 5.9 11.0 0.5 20
IEWMA 7.9 11.1 0.7 15
MGARCH 8.3 11.9 0.7 18
CM-IEWMA 7.3 10.9 0.7 13

PRESCIENT 14.3 9.9 1.4 9

(b) Stock data set.

Predictor Return/% Risk/% Sharpe Drawdown/%

RW 7.5 2.2 3.3 4
EWMA 7.2 2.1 3.4 4
IEWMA 7.1 2.1 3.3 4
MGARCH 7.3 2.2 3.3 3
CM-IEWMA 6.9 2.2 3.2 4

PRESCIENT 6.5 1.9 3.3 4

(c) Factor data set.
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(a) Industry data.

(b) Stock data set.

(c) Factor data set.

Figure 2.9: Yearly annualized Sharpe ratios together with the linear trend for mean variance portfolios
on three data sets.



CHAPTER 2. A SIMPLE COVARIANCE PREDICTOR FOR FINANCIAL RETURNS 39

2.6.5 Summary

In terms of log-likelihood and regret, CM-IEWMA performs best, followed by MGARCH, which

performs better than the simpler covariance predictors. In downstream portfolio optimization

experiments, CM-IEWMA and MGARCH again perform better than the other predictors, although

in many cases not by much. In these experiments there is more variation in the results, partly

explained by the di↵erence between our prediction (of a covariance matrix) and our metrics (such as

return, risk, drawdown). Even the simplest covariance predictors do a reasonable job of predicting

the portfolio risk.

2.7 Realized covariance

We have so far focused on predicting the covariance matrix of asset returns using historical return

data, i.e., we predict ⌃̂t from r1, . . . , rt�1. In this section we consider the use of additional data,

specifically, intraperiod returns. As an example, suppose the period is (trading) days. The methods

described in previous sections predict the covariance of the daily return from previous daily returns.

In so-called realized covariance, we predict the daily return covariance using intraday returns. Instead

of single period returns rt, we have multiple returns associated with period t. It is not surprising

that using multiple realized returns for each period, instead of just one, can improve our covariance

estimates.

Recent literature has shown that realized volatility and correlation measurements (based on

high-frequency intraperiod data) can improve performance over traditional predictors that rely on a

single realization per period. [138] extend the univariate GARCH model to the joint modeling of

returns and realized measures of volatility, and show empirically that this improves performance

over the standard GARCH model. In [22] a multivariate realized GARCH model is proposed. More

recently, [39] propose a realized semicovariance GARCH model to allow for nuanced responses to

positive and negative return shocks.

In this section we show that the dynamically weighted prediction combiner of §2.3.1 readily

handles multiple realized returns per period. For simplicity we will assume each period has the same

number of intraperiod returns, equally spaced in time. We redefine the return vector to be a return

matrix rt 2 Rn⇥m with columns that are the m intraperiod return vectors, for times t = 1, . . . , T .

The realized covariance at time t is defined as

Ct = rtr
T

t
,

the same formula for the realized return when rt is a single (vector) return. The realized covariance

matrix Ct has rank m when the m return vectors are linearly independent and m  n; this can be

compared to the realized covariance when we do not have intraperiod returns, which is rank one.
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2.7.1 Combined multiple realized EWMAs

The dynamically weighted prediction combiner of §2.3.1 readily handles multiple realized covariance

predictors.

Realized EWMA. We define the realized EWMA (REWMA) predictor as

⌃̂t = ↵t

t�1X

⌧=1

�t�1�⌧C⌧ , t = 2, 3, . . . ,

where C⌧ is the realized covariance at time ⌧ , � 2 (0, 1) is the forgetting factor, and ↵t is the

normalizing constant; see §2.2.2 for details. This is the same formula as the usual EWMA covariance,

with one return per period, given in (2.2), with rt extended to be a matrix of multiple returns.

Combined multiple realized EWMAs. The combined multiple realized EWMA (CM-REWMA)

predictor starts with a set of K REWMA predictors ⌃̂(k)
t

with half-lives H(k), k = 1, . . . ,K, and

combines them using the dynamically weighted prediction combiner of §2.3.1.

2.7.2 Data and experimental setup

Data set. We consider a universe of n = 39 assets with five-minute intraday returns corresponding

to m = 77. The assets were taken as a subset of those used by [252], and are available at [253]. The

data set spans January 2nd 2004 to December 30th 2016, for a total of 252021 data points over 3273

trading days. We list the assets in table 2.12.

Four covariance predictors. We evaluate four covariance predictors, described below.

• The CM-IEWMA predictor used for the stock data from §2.5.2. This predictor only uses daily

returns, and is not a realized covariance predictor.

• An REWMA predictor with a half-life of H = 10 days, denoted REWMA-10.

• A CM-REMWA predictor with five components with half-lives of 1, 5, 10, 21, and 63 days,

respectively.

• Prescient predictor, i.e., the empirical covariance for the quarter the day is in. As with the

CM-IEWMA predictor, this predictor uses daily return data. It is of course not implementable,

and meant only to show a bound on performance with which to compare our implementable

predictors.
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Ticker Company Name

JPM JPMorgan Chase
GS Goldman Sachs
KO The Coca-Cola Company
IBM International Business Machines Corporation
CAT Caterpillar Inc.
CVX Chevron Corporation
XOM Exxon Mobil Corporation
GE General Electric Company
MRK Merck & Co., Inc.
VZ Verizon Communications Inc.
PFE Pfizer Inc.
WMT Walmart Inc.
C Citigroup Inc.
HD The Home Depot, Inc.
BA The Boeing Company

MMM 3M Company
MCD McDonald’s Corporation
NKE NIKE, Inc.
JNJ Johnson & Johnson
INTC Intel Corporation
MSFT Microsoft Corporation
AAPL Apple Inc.
AMZN Amazon.com Inc.
CSCO Cisco Systems, Inc.
PG Procter & Gamble Co.
ABT Abbott Laboratories
VLO Valero Energy Corporation
HON Honeywell International Inc.
LMT Lockheed Martin Corporation
TXN Texas Instruments Inc.
COST Costco Wholesale Corporation
PEP PepsiCo, Inc.
UNP Union Pacific Corporation
WFC Wells Fargo & Co.
CVS CVS Health Corporation
ORCL Oracle Corporation
XRX Xerox Corporation
TMO Thermo Fisher Scientific Inc.
NSC Norfolk Southern Corporation

Table 2.12: Assets used in realized covariance study.
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Figure 2.10: CM-REWMA component weights, averaged annually.

2.7.3 Empirical results

CM-REWMA component weights. Figure 2.10 shows the component weights for the CM-

REWMA predictor, averaged annually. The weights are fairly stable over time but a weight shift

toward faster changing EWMAs is seen in 2008, during the financial crisis.

MSE. The average, standard deviation, and maximum MSEs, computed over distinct quarters

for the four covariance predictors, are given in table 2.13. The REWMA and CM-REWMA do

Predictor Average/10�4 Std. Dev./10�3 Max/10�3

CM-IEWMA 3.1 1.2 7.6
REWMA 3.0 1.1 7.3
CM-REWMA 3.0 1.1 7.2
PRESCIENT 3.0 1.1 7.1

Table 2.13: Metrics on the MSE, computed over distinct quarters.

slightly better than the CM-IEWMA predictor, but overall there is not a big di↵erence between the

predictors.

Regret. Figure 2.11 shows the average regret over distinct quarters for the CM-IEWMA, REWMA,

and CM-REWMA predictors. The CM-REWMA predictor has the lowest regret in almost all quarters.

It has lower regret than the REWMA predictor in 41 out of the 50 quarters, and lower regret than

the CM-IEWMA predictor in 39 out of the 50 quarters.
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Figure 2.11: Average regret over distinct quarters for three covariance predictors.

Finally, figure 2.12 shows the cumulative distribution functions of the average quarterly regret for

the di↵erent covariance predictors. CM-REWMA has lower regret than both the CM-IEWMA and

REWMA predictors, while REWMA has lower regret than CM-IEWMA.

Portfolio performance. Table 2.14 shows the portfolio metrics for five di↵erent portfolio construc-

tion methods. CM-REWMA does better than, or as well as, REWMA on almost all metrics, and

better than CM-IEWMA for all portfolios. However, the di↵erence on portfolio tasks is not large.

Summary. The results above show that using realized covariance, i.e., intraperiod returns instead

of just one return per period, gives covariance estimates that are a bit better than those obtained

using only one return per period.

2.8 Large universes

In a practical setting we often encounter a larger number of assets than considered in the previous

sections, which has led to extensive research in high-dimensional covariance estimation. One challenge

in large dimensions is ensuring positive definiteness of the covariance matrix, in particular with

model-based approaches such as MGARCH [20]. Several techniques have been proposed for estimating

MGARCH models in large dimensions; see, e.g., [97, 77, 76]. Others have focused on estimating
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Figure 2.12: Cumulative distribution functions of the average quarterly regret for three covariance
predictors.
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Predictor Return/% Risk/% Sharpe Drawdown/%

Equal weight
CM-IEWMA 3.2 9.9 0.3 18
REWMA 3.7 10.3 0.4 16
CM-REWMA 4.4 10.6 0.4 16
PRESCIENT 6.7 9.9 0.7 13

Minimum variance
CM-IEWMA 10.7 11.0 1.0 25
REWMA 10.7 10.5 1.0 21
CM-REWMA 12.0 10.7 1.1 21
PRESCIENT 11.7 10.0 1.2 12

Risk parity
CM-IEWMA 4.1 10.0 0.4 18
REWMA 4.7 10.3 0.5 17
CM-REWMA 5.5 10.6 0.5 17
PRESCIENT 8.0 9.9 0.8 12

Maximum diversification
CM-IEWMA 3.6 10.2 0.4 25
REWMA 4.3 10.5 0.4 21
CM-REWMA 5.1 10.8 0.5 19
PRESCIENT 7.8 9.9 0.8 16

Mean variance
CM-IEWMA 8.6 10.5 0.8 22
REWMA 8.5 10.3 0.8 16
CM-REWMA 9.3 10.5 0.9 19
PRESCIENT 10.9 9.8 1.1 21

Table 2.14: Metrics for five di↵erent portfolio construction methods, using four covariance predictors.
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realized covariance matrices in high dimensions; see, e.g., [244, 301, 142, 79, 103, 3]. For a detailed

review of recent developments in high-dimensional covariance estimation, we recommend [21, §6].
The methods described in previous sections can be adapted to handle large universes of assets,

say n larger than 100 or so. In this section we describe two closely related methods for improving

the performance with large n. Both methods end up modeling ⌃̂t as a low rank plus diagonal matrix,

in so-called factor form. Before describing these methods, we mention that evaluating log-likelihood

regret is complicated with large n. For the empirical covariance to be nonsingular (which is needed

to evaluate the regret), we need at least n periods; for daily returns with n = 1000, this amounts to

four years. Even if we have n periods of data, we would only be able to evaluate the regret a few

times. For example, with n = 1000 (four years) we need at least 40 years of data to compute the

average regret over 10 distinct periods. The log-likelihood, however, can still be evaluated over fewer

than n periods.

2.8.1 Traditional factor model

In practice most return covariance matrices for large universes are constructed from factors, with the

model

rt = Ftft + zt, t = 1, 2, . . . ,

where Ft 2 Rn⇥k is the factor exposure matrix, ft 2 Rk is the factor return vector, zt 2 Rn is

the idiosyncratic return, and k is the number of factors, typically much smaller than n. The factor

returns are constructed or found by several methods, such as principal component analysis (PCA),

or by hand; see, e.g., [14, 13, 190, 191, 255, 254, 102, 101]. Thus we assume that the factor returns

are known. Given the factor returns, the rows of the factor exposure matrix are typically found

by least squares regression over a rolling or exponentially weighted window [68]. The idiosyncratic

returns zt are then found as the residuals in this least squares fit. The factor returns ft are modeled

as N (0,⌃f
t
), and the idiosyncratic returns zt are modeled as N (0, Et), where Et is diagonal. It is

also assumed that the factor returns and idiosyncratic returns are independent across time and of

each other.

We end up with a covariance matrix in factor form, i.e., rank k plus diagonal,

⌃t = Ft⌃
f
t
FT

t
+ Et. (2.7)

We can easily use the methods described above with a factor model. Simply predict the factor return

covariance ⌃̂f
t
(using the factor returns ft) and the idiosyncratic variances Êt (using the entries of

zt), using the methods described in this monograph, and then form the covariance estimate

⌃̂t = Ft⌃̂
f
t
FT

t
+ Êt.



CHAPTER 2. A SIMPLE COVARIANCE PREDICTOR FOR FINANCIAL RETURNS 47

The factor model (2.7) can be written in a simpler form as

⌃t = F̃tF̃
T

t
+ Et, (2.8)

with F̃t = Ft(⌃f
t
)1/2. This form does not include a factor covariance ⌃f, or equivalently, assumes

⌃f
t
= I, i.e., the factors are independent with standard deviation one. (The associated factors are

called whitened factors.) We will use the factor model form (2.8) in the sequel.

The factor model (2.8) has parameters F̃t and Et, which all together include nk + n scalar

parameters. (Some of these are redundant; for example we can insist without loss of generality that F

is lower triangular.) The factor model contains substantially fewer scalar parameters than a generic

n⇥ n covariance matrix, which contains n(n+ 1)/2 scalar parameters.

The smaller number of parameters is not the only reason for using a factor model. Another is

that it often gives better covariance estimates. We can think of the low rank plus diagonal structure

as regularization, which can improve out-of-sample performance. In addition, the low rank plus

diagonal structure can be exploited in portfolio construction, bringing the computational complexity

down from O(n3) to O(nk2) operations [48]. This makes portfolio optimization with n = 1000 assets

and k = 50 factors extremely fast, and makes possible optimization of portfolios with much larger

values of n.

2.8.2 Fitting a factor model to a covariance matrix

In this section we consider the problem of fitting a given covariance matrix ⌃ by one in factor form,

⌃̂ = FFT + E, where F 2 Rn⇥k. This corresponds to the model r = Ff + z, with (factor return)

f ⇠ N (0, I), and (idiosyncratic return) r ⇠ N (0, E), with E diagonal. We let ✓ = (F,E) denote the

parameters of our factor form model.

We seek F 2 Rn⇥k and diagonal E 2 Rn⇥n (with positive diagonal entries) that minimize the

Kullback-Leibler (KL) divergence between N (0,⌃) and N (0, ⌃̂),

K(⌃, ⌃̂) =
1

2

 
log

det ⌃̂

det⌃
� n+Tr ⌃̂�1⌃

!
. (2.9)

The KL divergence can be expressed in terms of the average log-likelihood of N (0, ⌃̂) under N (0,⌃)

as

E
r⇠N (0,⌃)

`⌃̂(r) = �K(⌃, ⌃̂)� (1/2)(n log 2⇡ + n+ log det⌃), (2.10)

where `⌃̂(r) is the log-likelihood of r under N (0, ⌃̂). Hence minimizing the KL-divergence (2.9) is

equivalent to maximizing the expected log-likelihood (2.10) of r under the model N (0, ⌃̂).
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Solution via EM. We can use the expectation-maximization (EM) algorithm to approximately

minimize K(⌃, FFT + E) over F and E [81, 268]. Usually EM is used to fit a factor model to data,

i.e., samples; here we use it to fit a given Gaussian distribution N (0,⌃). The method described

below was suggested and derived by Emmanuel Candès. We are not aware of its appearance in prior

literature. A forthcoming paper on this method will include more detail and applications.

The EM algorithm is an iterative method for maximizing (2.10). Each iteration consists of two

steps: the expectation or E-step, and the maximization or M-step. We use the conventional symbols

used to describe EM, and use subscript j = 1, 2, . . . to denote iteration number. (A good method for

initializing the EM algorithm is provided below.)

E-step. In the E-step, we find the expected log-likelihood under the current estimate of the

parameters ✓j = (Fj , Ej), over the true distribution of r:

Q(✓ || ✓j) = E
r⇠N (0,⌃)

E
p✓j

(f |r)
`✓(r, f) (2.11)

where p✓j (f | r) is the density of the conditional distribution of f under the parameter estimates at

iteration j, and `✓(r, f) is the log likelihood of the joint distribution with variable ✓ = (F,E).

With our factor model the complete log-likelihood of (r, f) is

`✓(r, f) = �1

2

�
(r � Ff)TE�1(r � Ff) + fT f + log detE

�

+
1

(2⇡)n/2
+

1

(2⇡)k/2
� k/2.

The conditional distribution of f | r under ✓j is [31]

f | r ⇠ N (Bjr,Gj),

where

Bj = GjF
T

j
E�1

j
, G�1

j
= FT

j
E�1

j
Fj + I. (2.12)

Hence, (2.11) becomes, up to an additive constant,

�1

2
Tr(E�1 (Crr � 2CrfF

T + FCssF
T ))� 1

2
log detE, (2.13)

where

Crr = ⌃, Crf = ⌃BT

j
, Cff = Bj⌃B

T

j
+Gj . (2.14)
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M-step. In the M-step (2.11) is maximized with respect to ✓ to obtain the updated parameters:

✓j+1 = argmax
✓

Q(✓ || ✓j).

The maximizer of (2.13) is [268]

Fj+1 = CrfC
�1
ff

,

Ej+1 = diag(diag(Crr � 2CrfF
T

j+1 + Fj+1CffF
T

j+1)),

where the inner diag extracts the diagonal of its (matrix) argument, and the outer diag creates a

diagonal matrix from its (vector) argument.

EM iteration. The EM iteration has the form

Fj+1 = CrfC
�1
ff

,

Ej+1 = diag(diag(Crr � 2CrfF
T

j+1 + Fj+1CffF
T

j+1)),

where Crr, Crf , and Cff come from (2.12) and (2.14).

Initialization. To initialize the EM algorithm we use the following method, based on low rank

approximation via eigendecomposition. We work with the correlation matrix of ⌃, denoted

R = diag(�)�1⌃diag(�)�1,

where � = diag(⌃)1/2 (entrywise). First we express R in its eigendecomposition R =
P

n

i=1 �iqiqTi ,

with �1 � �2 � · · · � �n. We then form the rank k approximation

bR =
kX

i=1

�iqiq
T

i
.

We only need to compute the k dominant eigenvectors and eigenvalues, which can be done e�ciently

using for example the Lanczos algorithm [123]. Let

bE = diag
⇣
diag(R� bR)

⌘
,

which can be shown to have positive diagonal entries. Our low-rank plus diagonal approximation

of R is then bR+ bE. It is also a correlation matrix, i.e., has diagonal entries one. Our final factor

approximation of ⌃ is given by

diag(�)( bR+ bE)diag(�) = FFT + E,
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with

F = diag(�)[
p

�1q1 · · ·
p
�kqk], E = diag(e � �2),

where � denotes the elementwise (Hadamard) product, and �2 means elementwise.

This initialization alone can serve as a basic method to fit a factor model to a given covariance

matrix. We will see below that in terms of portfolio optimization, it serves just as well as a factor

model fit using the EM method.

2.8.3 Data and experimental setup

Data set. We gather the 500 largest NASDAQ stocks (by market capitalization) at the beginning

of 2000 from the WRDS portal [308], compute the daily returns of these stocks from January 3rd

2000 to December 30th 2022, and remove any stocks with missing return values during this period.

This gives us 238 stocks over 5787 (trading) days. We acknowledge that we induce a survivor bias,

but the purpose of this empirical study is solely to demonstrate the benefit of regularization in large

universes, and not to backtest a trading strategy.

Traditional factor model. We create a factor model using PCA as follows. Every year, the k

principal components of largest explanatory power are computed, using the past two years of returns.

These define the columns of the factor exposure matrix Ft for the following year, and the factor

returns ft are the projections of the returns onto these principal components. The idiosyncratic

returns zt are the residuals. We leverage the CM-IEWMA predictor to compute the factor covariance,

using three IEWMA components with half-lives (in days) Hvol/Hcor of dk/2e/k, k/3k, and 3k/6k,

where k denotes the number of factors. To estimate the idiosyncratic variances a 21-day EWMA is

used. We evaluate the factor models on the average log-likelihood over the evaluation period.

Fitting a factor model to the covariance matrix. We use a CM-IEWMA covariance predictor

with four IEWMA components with half-lives 63/125, 125/250, 250/500, and 500/1000 days, respec-

tively, given as Hvol/Hcor. Given the CM-IEWMA estimate ⌃̂t at time t, we approximate it using a

factor model as described in §2.8.2.
To evaluate the factor models, we look at the average log-likelihood over the evaluation period

and several performance metrics for a minimum variance portfolio with Lmax = 1.6, wmin = �0.1,

and wmax = 0.15, diluted to a target risk of 10%.

2.8.4 Empirical results

Traditional factor model. Figure 2.13 shows the log-likelihood versus the number of factors k

for k between 2 and 75. A large increase in log-likelihood is attained with around 20 factors, as
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Figure 2.13: Log-likelihood versus the number of factors, using a conventional factor model.

compared to using the full covariance matrix. Thus using a traditional factor model and applying

our covariance estimation method to the factor returns improves our overall covariance prediction.

Fitting a factor model to the covariance matrix. Figure 2.14 shows the log-likelihood versus

the number of factors (i.e., the rank of the low-rank component) k for various k between 2 and 75,

using the eigendecomposition initialization and the EM algorithm. We see that a rank of about r = 20

seems optimal for this data set, and achieves a noticeably higher log-likelihood than using the full-rank

covariance. Moreover, the EM algorithm does better than just computing the eigendecomposition.

Figure 2.15 shows the portfolio metrics for the minimum variance portfolios. We can see that

with roughly 10 factors or more, the performance is essentially identical to that obtained using the

full covariance matrix. For these experiments we observed no notable di↵erence between the two

factor model fitting methods, i.e., the simple eigendecomposition based initialization and the more

sophisticated EM method. While using the factor model does not improve portfolio performance, it

greatly speeds up the computation of the portfolio optimization problems.
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Figure 2.14: Log-likelihood versus the number of factors, obtained by fitting our covariance estimate
with a factor model.
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(a) Risk.

(b) Sharpe ratio.

(c) Drawdown.

Figure 2.15: Portfolio metrics for minimum variance portfolios constructed via factor models with
various number of factors.
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2.9 Smooth covariance predictions

We address here a secondary objective for a covariance prediction ⌃̂t, which is that it vary smoothly

across time. Perhaps the main reason for desiring smoothness of the covariance estimate is that it

can lead to reduced trading in portfolio construction methods; it can also lead to improved portfolio

performance, even without taking into account transaction costs.

To some extent smoothness happens naturally, since whatever method is used to form ⌃̂t from

r1, . . . , rt�1 is likely to yield a similar prediction ⌃̂t+1 from r1, . . . , rt. It is also possible to further

smooth the predictions over time, perhaps trading o↵ some performance, e.g., in log-likelihood regret.

We have already mentioned that the weight optimization problem (2.6) can be modified to

encourage smoothness of the weights over time. We can also directly smooth the prediction ⌃̂t, to

get a smooth version ⌃̂sm
t

. A very simple approach is to let ⌃̂sm
t

be a EWMA of ⌃̂t, with a half-life

chosen as a trade-o↵ between smoother predictions and performance. This EWMA post-processing

is equivalent to choosing ⌃̂sm
t

to minimize

���⌃̂sm
t

� ⌃̂t

���
2

F

+ �
���⌃̂sm

t
� ⌃̂sm

t�1

���
2

F

,

where � is a positive regularization parameter used to control the trade-o↵ between smoothness and

performance, or equivalently, the half-life of the EWMA post-processing. Here the first term is a loss,

and the second is a regularizer that encourages smoothly varying covariance predictions.

We can create more sophisticated smoothing methods by changing the loss or the regularizer

in this optimization formulation of smoothing. For example, we can use the Kullback-Leibler (KL)

divergence as a loss. With regularizer �k⌃̂sm
t

� ⌃̂sm
t�1kF (no square in this case), we obtain a piecewise

constant prediction, which roughly speaking only updates the prediction when needed. This is a

convex optimization problem which can be solved quickly and reliably [48].

2.9.1 Data and experimental setup

We consider again the Fama-French factor returns from §2.5.1, over the same time horizon. We use

the CM-IEWMA covariance predictor with the same parameters as in §2.5.2.

Smoothly varying covariance. In the first experiment we smooth the CM-IEWMA covariance

estimates by applying a EWMA, which corresponds to the �
���⌃̂sm

t
� ⌃̂sm

t�1

���
2

F

regularizer. For di↵erent

EWMA half-lives we attain di↵erent levels of smoothness.

Piecewise constant covariance. In the second experiment we smooth the CM-IEWMA covariance

estimates by applying the �
���⌃̂sm

t
� ⌃̂sm

t�1

���
F

regularizer. For di↵erent values of � we attain piecewise

constant covariance predictors with di↵erent update frequencies.
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Figure 2.16: Average regret versus smoothness when using EWMA smoothing of the covariance
predictor.

2.9.2 Empirical results

Smoothly varying covariance. Figure 2.16 shows the regret versus smoothness for various levels

of smoothness. As seen, we can reduce the smoothness by a factor of (roughly) four without losing

much performance in terms of regret. This can obviously be useful in practice since a smoother

covariance estimate would, for example, reduce trading.

Table 2.15 shows the portfolio metrics for various values of � for the minimum variance portfolio

with the same parameters as in §2.6.4; here the turnover is defined as the average of 252⇥ kwt+1 �
wtk1/kwtk1 over all times t in the evaluation period. Interestingly, the right amount of smoothing

not only reduces turnover, but also improves portfolio performance in terms of Sharpe ratio and

drawdown, while keeping the desired volatility level. Too much smoothing, however, leads to reduced

portfolio performance. Figure 2.17 shows the yearly annualized Sharpe ratios for � = 10�4, indicating

a stable performance over time.

Figure 2.18 shows the portfolio weights for three di↵erent EWMA half-lives.

As seen, EWMA smoothing leads to smoothly varying portfolio weights, while the weights vary

significantly when no smoothing is applied.
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Table 2.15: Portfolio metrics for various EWMA half-lives used for smoothing the covariance. Half-life
0 means no smoothing.

Half-life/days Return/% Risk/% Sharpe Drawdown/% Turnover/%

0 1.2 2.1 0.5 21 1855
10 1.4 2.1 0.7 16 310
100 1.8 2.1 0.9 15 56
250 2.1 2.1 1.0 13 30
5000 2.9 2.6 1.1 21 9

Figure 2.17: Yearly annualized Sharpe ratios for the minimum variance portfolio when smoothing
the CM-IEMA covariance predictor with a 250-day half-life EWMA.
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(a) No smoothing.

(b) Half-life of 250 days.

(c) Half-life of 5000 days.

Figure 2.18: Portfolio weights for three di↵erent regularization parameters �.
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Figure 2.19: Average regret versus time between covariance updates.

Table 2.16: Portfolio metrics for various regularization parameters �. � = 0 means no smoothing.

� Return/% Risk/% Sharpe Drawdown/% Turnover/%

0 1.2 2.1 0.5 21 1855
5⇥ 10�5 1.9 2.0 1.0 14 1190
10�4 2.4 1.9 1.3 9 112
10�3 2.6 2.1 1.2 17 7
7.5⇥ 10�3 3.0 4.8 0.6 31 0

Piecewise constant covariance. Figure 2.19 shows the regret versus the update frequency of the

covariance estimate. There is a clear trade-o↵ between the regret and update frequency. Roughly

speaking, we could update the covariance matrix weekly without losing much in terms of regret.

As mentioned, a piecewise constant predictor can be desirable in practice, since it encourages us

not updating the portfolio weights, which in turn reduces trading costs. Table 2.16 shows the portfolio

metrics for various values of � for the minimum variance portfolio from §2.6.4. As seen, smoothing can

significantly reduce turnover, and interestingly improve the Sharpe ratio and drawdown noticeably

while maintaining the correct risk level. Figure 2.20 shows the yearly annualized Sharpe ratios for

� = 10�4. The performance is relatively stable over time, with a small downward trend.

To illustrate the impact of smoothing we show the portfolio weights for three di↵erent values of
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Figure 2.20: Yearly annualized Sharpe ratios for the minimum variance portfolio with a piecewise
constant CM-IEMA covariance predictor using � = 10�4.

� in figure 2.21. Without smoothing the portfolio weights are updated significantly every day. For

� = 10�4 the weights are updated around once or twice a month. Finally, for � = 10�5 the weights

are updated on average every half a year, with only four big weight updates over the whole trading

period. Interestingly, the weight updates for � = 10�5 correspond precisely in time to the volatile

regime around 1980, the 2000 dot-com bubble, the 2008 financial crisis, and the 2020 pandemic. In

short, we can conclude from table 2.16 and figure 2.21 that smoothing can lead to less trading and

improve the portfolio performance.

Finally, we note that there is some deviation between the regret metric and portfolio performance.

As seen from figure 2.19 regret increases as we update the covariance matrix less than every other

week. However, as seen from table 2.16 and figure 2.21, portfolio performance can improve notably

when updating the covariance matrix only every few months, or even years.

2.10 Simulating returns

Our model can be used to simulate future returns, when seeded by past realized ones. To do this,

we start with realized returns for periods 1, . . . , t� 1, and compute ⌃̂t using our method. Then we

generate or sample rsim
t

from N (0, ⌃̂t). We then find ⌃̂t+1 using the returns r1, . . . , rt�1, rsimt
. We

generate rsim
t+1 by sampling from N (0, ⌃̂t+1). This continues.
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(a) � = 0.

(b) � = 10�3.

(c) � = 10�4.

Figure 2.21: Portfolio weights for three di↵erent regularization parameters �.
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This simple method generates realistic return data in the short term. Of course, it does not

include shocks or rapid changes in the return statistics that we would see in real data, but the

generative return method has several practical applications. To mention just one, we can simulate

100 (say) di↵erent realizations over the next quarter (say), and use these to compute 100 performance

metrics for our portfolio. This gives us a distribution of the performance metric that we might see

over the next quarter.

2.10.1 Data and experimental setup

To illustrate the generative return method, we consider the five Fama-French factor returns from

§2.5.1. Using the same setup as in §2.5.2 we compute CM-IEMWA covariance estimates, using

data from January 1st 2011 to December 31 2013, i.e., over a three-year period. Returns are then

generated for 100 days, using the generative mode described above.

2.10.2 Empirical results

We illustrate the results by looking at the SMB factor, i.e., we look at the marginal distribution

of this factor. Figure 2.22 shows the true SMB factor returns and the simulated returns for two

di↵erent random number generator seeds. As seen, we attain realistic returns that could be used to

generate scenarios for downstream portfolio optimization tasks, for example.

2.11 Conclusions

We have introduced a simple method for predicting covariance matrices of financial returns. Our

method combines well known ideas such as EWMA, first estimating volatilities and then correlations,

and dynamically combining multiple predictions. The method relies on solving a small convex

optimization problem (to find the weights used in the combining), which is extremely fast and reliable.

The proposed predictor requires little or no tuning or fitting, is interpretable, and produces results

better than the popular EWMA estimate, and comparable to MGARCH. Given its interpretability,

light weight, and good practical performance, we see it as a practical choice for many applications

that require predictions of the covariance of financial returns.
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(a) Observed returns.

(b) Observed returns (left) and simulated
returns (right).

(c) Observed returns (left) and simulated
returns (right).

Figure 2.22: Observed and simulated SMB factor returns for two di↵erent seeds. The vertical line
separates the in-sample (observed returns) and out-of-sample (simulated returns) periods.



Chapter 3

Markowitz portfolio construction at

seventy

3.1 Introduction

Harry Markowitz’s 1952 paper Portfolio Selection [209] was a true breakthrough in our understanding

of and approach to investing. Before Markowitz there was (almost) no mathematical approach to

investing. As a 25-year-old graduate student, Markowitz founded modern portfolio theory, and

methods inspired by him would become the most widely used portfolio construction practices over

the next 70 years (and counting).

Before Markowitz, diversification and risk were fuzzy concepts. Investors loosely connected risk

to the probability of loss, but with no analytical rigor around that connection. Ben Graham, who

along with David Dodd wrote Security Analysis [126], once commented that investors should own “a

minimum of ten di↵erent issues and a maximum of about thirty” [125].

There were a few precursors, such as an article by de Finetti, that contained some similar ideas

before Markowitz; see [74, 269] for a discussion and more of the history of mathematical formulation of

portfolio construction. Another notable precursor is John Burr Williams’ 1938 Theory of Investment

Value [306]. He argued that the value of a company was the present value of future dividends. His

book is full of mathematics, and Williams predicted that “mathematical analysis is a new tool of great

power, whose use promises to lead to notable advances in investment analysis”. That prediction came

true with Markowitz’s work. Indeed, Markowitz considered Williams’ book as part of his inspiration.

According to Markowitz, “the basic concepts of portfolio theory came to me one afternoon in the

library while reading John Burr Williams’ Theory of Investment Value”.

For many years, the lack of data and accessible computational power [213] rendered Markowitz’s

ideas impractical, despite his pragmatic approach. In 1963, William Sharpe published his market

63
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model [279], designed to speed up the Markowitz calculations. This model was a one-factor risk model

(the factor was the market return), with the assumption that all residual returns are uncorrelated.

His paper stated that solving a 100-asset problem on an IBM 7090 computer required 33 minutes,

but his simplified risk model reduced it to 30 seconds. He also commented that computers could

only handle 249 assets at most with a full covariance matrix, but 2000 assets with the simplified risk

model. Today such a problem can be solved in microseconds; we can routinely solve problems with

tens of thousands of assets and substantially more factors in well under one second.

Markowitz portfolio construction has thrived for many years in spite of claims of various alleged

deficiencies. These have included the method’s sensitivity to data errors and estimation uncertainty, its

single-period nature to handle what is fundamentally a multi-period problem, its symmetric definition

of risk, its neglect of higher moments like skewness and kurtosis, and its neglect of transaction costs

and leverage risk. We will address these alleged criticisms and show that standard techniques in

modern approaches to optimization e↵ectively deal with them without altering Markowitz’s vision

for portfolio selection.

In 1990 Markowitz was awarded the Nobel Memorial Prize in Economics for his work on portfolio

theory, shared with Merton Miller and William Sharpe. For more light on the fascinating historic

details we recommend an interview with Markowitz [213], his acceptance speech for the Nobel

Prize [214], and his remarks in the introduction to the Handbook of Portfolio Construction [133].

3.1.1 The original Markowitz idea

Markowitz identified two steps in the portfolio selection process. In a first step, the investor forms

beliefs about the expected returns of the assets, expressed as a vector µ, and their covariances,

expressed as a covariance matrix ⌃, which gives the volatilities of asset returns and the correlations

among them. These beliefs are the core inputs for the second step, which is the optimization of the

portfolio based on these quantities.

He introduced the expected returns–variance of returns (E–V) rule, which states that an investor

desires to achieve the maximum expected return for a portfolio while keeping its variance or risk

below a given threshold. Convex programming was not a well developed field at that time, and

Markowitz used a geometric interpretation in the space of portfolio weights [209] to solve the problem

we would now express as

maximize µTw

subject to wT⌃w  (�tar)2,

1Tw = 1,

(3.1)

with variable w 2 Rn, the set of portfolio weights, where 1 is the vector with all entries one. The

data in the problem are µ 2 Rn, the vector of expected asset returns, and ⌃, the n⇥ n covariance

matrix of asset returns. The positive parameter �tar is the target portfolio return standard deviation

or volatility. (We define the weights and describe the problem more carefully in §3.2.)
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There are many other ways to formulate the trade-o↵ of expected return and risk as an optimization

problem [49, 10]. One very popular method maximizes the risk-adjusted return, which is the expected

portfolio return minus its variance, scaled by a positive risk-aversion parameter. This leads to the

optimization problem [130]

maximize µTw � �wT⌃w

subject to 1Tw = 1,
(3.2)

where � is the risk-aversion parameter that controls the trade-o↵ between risk and return. Both

problems (3.1) and (3.2) give the full trade-o↵ curve of Pareto optimal weights, as �tar or � vary

from 0 to 1 (although (3.1) can be infeasible when �tar is too small). One advantage of the first

formulation (3.1) is that the parameter �tar that controls the volatility is interpretable as, simply,

the target risk level. The risk-aversion parameter � appearing in (3.2) is less interpretable. We will

have more to say about the parameters that control trade-o↵s in portfolio construction in §3.4.
Both problems (3.1) and (3.2) have analytical solutions. For example the solution of (3.2) is

given by

w? =
1

2�
⌃�1(µ+ ⌫?1), ⌫? =

2� � 1T⌃�1µ

1T⌃�11
.

(The scalar ⌫? is the optimal dual variable [49, Chap. 5].) We note here the appearance of the inverse

covariance matrix. To compute w? we would not compute the inverse, but rather solve two sets

of equations to find ⌃�1µ and ⌃�11 [51]. Still, the appearance of ⌃�1 in the expressions for the

solutions give us a hint that the method can be sensitive to the input data when the covariance

matrix ⌃ is nearly singular. These analytical formulas can also be used to back out so-called implied

returns, i.e., the mean µ for which a given portfolio is optimal. For example the market implied

return µmkt is the return for which the optimal weights are the market weights, i.e., proportional to

asset capitalization.

Both formulations (3.1) and (3.2) are referred to as the basic Markowitz problem, or mean-variance

optimization, since they both trade o↵ the mean and variance of the portfolio return. In his original

paper Markowitz also noted that additional constraints can be added to the problem, specifically

the constraint that w � 0 (elementwise), which means the portfolio is long-only, i.e., it does not

contain any short positions. With this added constraint, the two problems above do not have simple

analytical solutions. But the formulation (3.2), with the additional constraint w � 0, is a quadratic

program (QP), a type of convex optimization problem for which numerical solvers were developed

already in the late 1950s [307]. In that early paper on QP, solving the Markowitz problem (3.2)

with the long-only constraint w � 0 was listed as a prime application. Today we can solve either

formulation reliably, with essentially any set of convex portfolio constraints.

Since the 1950s we have seen a truly stunning increase in computer power, as well as the

development of convex optimization methods that are fast and reliable, and high-level languages

that allow users to express complex convex optimization problems in a few lines of clear code.
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These advances allow us to extend Markowitz’s formulation to include a large number of practical

constraints and additional terms, such as transaction cost or the cost incurred when holding short

positions. In addition to directly handling a number of practical issues, these generalizations of the

basic Markowitz method also address the issue of sensitivity to the input data µ and ⌃. This chapter

describes one such generalization of the basic Markowitz problem, that works well in practice.

Out of respect for Markowitz, and because the more generalized formulation we present here is

nothing more than an extension of his original idea, we will refer to these more complex portfolio

construction methods also as Markowitz methods. When we need to distinguish the extension of

Markowitz’s portfolio construction that we recommend from the basic Markowitz method, we refer

to it as Markowitz++. (In computer science, the post-script ++ denotes the successor.)

3.1.2 Alleged deficiencies

The frequent criticism of Markowitz’s work is a testament to its importance. These criticisms usually

fall into one or more of the following (related) categories.

It’s sensitive to data errors and estimation uncertainty. The sensitivity of Markowitz

portfolio construction to input data is well documented [236, 229, 274, 55, 65], and already hinted at

by the inverse covariance that appears in the analytical solutions of the basic Markowitz method.

This sensitivity, coupled with the challenge of estimating the mean and covariance of the return, leads

to portfolios that exacerbate errors or deficiencies in the input data to find unrealistic and poorly

performing portfolios. Some authors argue that choosing a portfolio by optimization, as Markowitz’s

method does, is essentially an estimation-error maximization method. This is still a research topic

that draws much attention. In the recent papers [122, 284] the authors quantify how the (basic)

Markowitz portfolio is a↵ected by estimation errors in the covariance matrix.

This criticism is justified, on the surface. Markowitz portfolio construction can perform poorly

when it is näıvely implemented, for example by using empirical estimates of mean and covariance on

a trailing window of past returns. The critical practical issues of taming sensitivity and gracefully

handling estimation errors are readily addressed using techniques such as regularization and robust

optimization, described in more detail in §3.1.3. A recent paper on this topic is [26].

It implicitly assumes risk symmetry. Markowitz portfolio construction uses variance of the

portfolio return as its risk measure. With this risk measure a portfolio return well above the mean

is just as bad as one that is well below the mean, whereas the former is clearly a good event,

not a bad one. This observation should at least make one suspicious of the formulation, and has

motivated a host of proposed alternatives, such as defining the risk taking into account only the

downside [210, Chap. IX]. This criticism is also valid, on the surface. But when the parameters

are chosen appropriately, and the data are reasonable, portfolios constructed from mean-variance
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optimization do not su↵er from this alleged deficiency. Moreover, it has been shown that the mean-

variance optimal portfolio is the same as the optimal portfolio attained from maximizing expected

utility under a broad range of distributional assumptions on the asset returns, including asymmetric

ones [26, 275, 227, 11, 64].

We should maximize expected utility. A more academic version of the previous criticism is

that portfolios should be constructed by maximizing the expected value of a concave increasing utility

function of the portfolio return [303]. The utility in mean-variance optimization (with risk-adjusted

return objective) is U(R) = R � �R2, where R is the portfolio return. This utility function is

concave, but only increasing for R < 1/(2�); above that value of return, it decreases, putting us in

the awkward position of seeming to prefer smaller returns over larger ones.

This criticism is also valid, taken at face value; the quadratic utility above is indeed not increasing.

Markowitz himself addressed the issue in a 1979 paper with H. Levy that argued that while mean-

variance optimization does not appear to be the same as maximizing an expected utility, it is a

very good approximation; see [192] and [215, Chap. 2]. But in fact it turns out that Markowitz

portfolio construction does maximize the expected value of a concave increasing utility function.

Specifically if we model the returns as Gaussian, and use the exponential utility U(R) = 1�exp(��R),

then the expected utility is the risk-adjusted return, up to an additive constant [204]. In other

words, Markowitz portfolio construction does maximize expected utility of portfolio return, for a

specific concave increasing utility function and a specific asset return distribution. Beyond practical

considerations and the specific case of Gaussian distributions, [26] recently expanded the applicability

of Markowitz portfolio construction by demonstrating its equivalence to maximizing expected utility

under a wide array of distributional assumptions. This broader applicability encompasses not only

elliptical distributions, such as the t-distribution, but also extends to distributions with fat tails and

those that exhibit asymmetry. For more on the relationship between Markowitz portfolio construction

and expected utility maximization, see [275, 227, 11, 64].

It considers only the first and second moments of the return. Mean-variance optimization

naturally only considers the first two moments of the distribution. It would seem that taking higher

moments like skewness and kurtosis into account might better describe investor preferences [61, 320].

This, coupled with the fact that the tails of asset returns are not well modeled by a Gaussian

distribution [100], suggests that portfolio construction should consider higher moments than the first

and second.

While it is possible to construct small academic examples where mean-variance optimization does

poorly due to its neglect of higher moments, simple mean-variance optimization does very well on

practical problems. In [204] the authors extend Markowitz by maximizing exponential utility, but

with a more complex Gaussian mixture model of asset returns. Such a distribution is general, in

that it can approximate any distribution. Their method evidently handles higher moments, but
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empirically gives no boost in performance on practical problems.

Markowitz himself addressed the common misconception that he labeled the “Great Confu-

sion” [213, 215, 211, 212], stating that Gaussian returns are merely a su�cient but not a necessary

condition on the return distribution for mean-variance optimization to work well and that mean and

variance are good approximations for expected utility.

It’s a greedy method. Portfolios are generally not just set up and then held for one investment

period; they are rebalanced, and sometimes often. Problems in which a sequence of decisions are

made, based on newly available information, are more accurately modeled not as simple optimization

problems, but instead as stochastic control problems, also known as sequential decision making under

uncertainty [174, 175, 23, 28]. In the context of stochastic control, methods that take into account

only the current decision and not future ones are called greedy, and in some cases can perform very

poorly. This criticism is also, on its face, valid. Using Markowitz portfolio construction repeatedly,

as is always done in practice, is a greedy method.

We can readily counter this criticism. First, in the special case with risk-adjusted return and

quadratic transaction costs, and no additional constraints, the stochastic optimal policy can be

worked out, and coincides with a single-period Markowitz portfolio [131, 17]. This suggests that

when other constraints are present, and the transaction cost is not quadratic, the (greedy) Markowitz

method should not be too far from stochastic optimal.

Second, there are extensions of Markowitz portfolio construction, called multi-period methods, that

plan a sequence of trades over a horizon, and then execute only the first trade; see, e.g., [43, 193, 219].

These multi-period methods can work better than so-called single-period methods, for example when

a portfolio is transitioning between two managers, or being set up or liquidated over multiple periods.

But in almost all other cases, single-period methods work just as well as multi-period ones.

The third response to this criticism more directly addresses the question. In the paper Performance

Bounds and Suboptimal Policies for Multi-Period Investment [46], the authors develop bounds on

how well a full stochastic control trading policy can do, and show empirically that single-period

Markowitz trading essentially does as well as a full stochastic control policy (which is impractical if

there are more than a handful of assets). So while there are applications where greedy policies do

much more poorly than a true stochastic control policy, it seems that multi-period trading is not one

of them.

3.1.3 Robust optimization and regularization

Here we directly address the question of sensitivity of Markowitz portfolio construction to the input

data µ and ⌃. As mentioned above, the basic methods are indeed sensitive to these parameters.

But this sensitivity can be mitigated and tamed using techniques that are widely used in other

applications and fields, robust optimization and regularization.
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Robust optimization. Modifying an optimization-based method to make it more robust to data

uncertainty is done in many fields, using techniques that have di↵ering names. When optimization is

used in almost any application, some of the data are not known exactly, and solving the optimization

problem without recognizing this uncertainty, for example by using some kind of mean or typical

values of the parameters, can lead to very poor practical performance. Robust optimization is a

subfield of optimization that develops methods to handle or mitigate the adverse e↵ects of parameter

uncertainty; see, e.g., [24, 296, 113, 25, 29, 196]. These methods tend to fall in one of two approaches:

statistical or worst-case deterministic. In a statistical model, the uncertain parameters are modeled

as random variables and the goal is to optimize the expected value of the objective under this

distribution, leading to a stochastic optimization problem [277], [49, Chap. 6.4.1]. A worst-case

deterministic uncertainty model posits a set of possible values for parameters, and the goal is to

optimize the worst-case value of the objective over the possible parameter values [30], [49, Chap. 6.4.2].

Another name for worst-case robust optimization is adversarial optimization, since we can model the

problem as us choosing values for the variables to obtain the best objective, after which an adversary

chooses the values of the parameters so as to achieve the worst possible objective. Worst-case robust

optimization has many variations and goes by many names. For example when the set of possible

parameter values is finite, they are called scenarios or regimes, and optimizing for the worst-case

scenario is called worst-case scenario optimization. While these general approaches sound quite

di↵erent, they often lead to very similar solutions, and both can work well in applications. Robust

optimization methods work by modifying the objective or constraints to model the possible variation

in the data.

One very successful application of robust optimization is in robust control, where a control system

is designed so that the control performance is not too sensitive to changes in the system dynamics

[319, 172]. So-called linear quadratic optimal control was developed around 1960, and used in many

applications. Its occasional sensitivity to the data (in this case, the dynamic model of the system

being controlled) was noted then; by the early 1990s robust control methods were developed, and are

now very widely used.

Regularization. Regularization is another term for methods that modify an optimization problem

to mitigate sensitivity to data. It is almost universally used in statistics and machine learning

when fitting models to data. Here we fit the parameters of a model to some given training data,

accounting for the fact that the training data set could have been di↵erent [293, 141]. This process

of regularization can be done explicitly by adding a penalty term to the objective, and also implicitly

by adding constraints to the problem that prevent extreme outcomes. Regularization can often be

interpreted as a form of robust optimization; see, e.g., [49, Chap. 6.3–6.4]. Markowitz explicitly

advocates the use of constraints in portfolio optimization [155, Foreword].
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The high level story. Robust optimization and regularization both follow the same high level

story, and both can be applied to the Markowitz problem. The story starts with a basic optimization-

based method that relies on data that are not known precisely. We then modify the optimization

problem, often by adding additional objective terms or constraints. Doing this worsens the in-

sample performance. But if done well, it improves out-of-sample performance. Roughly speaking,

robustification and regularization tell the optimizer to not fully trust the data, and this serves it well

out-of-sample.

In portfolio construction a long-only constraint can be interpreted as a form of regularization [158].

A less extreme version is to add a leverage aversion cost term [156] or impose a leverage limit [210],

which can help avoid many of the data sensitivity issues. We will describe below some e↵ective and

simple robustification methods for portfolio construction.

Regularization can (and should) also be applied to the forecasting of the mean and covariance in

Markowitz portfolio construction. The Black-Litterman approach to estimating the mean returns

regularizes the estimate toward the market implied return [33]. A return covariance estimate can be

regularized using shrinkage, another term for regularized estimation in statistics [186].

3.1.4 Convex optimization

Over the same 70-year period since Markowitz’s original work, there has been a parallel advance in

mathematical optimization, and especially convex optimization, not to mention stunning increases

in available computer power. Roughly speaking, convex optimization problems are mathematical

optimization problems that satisfy certain mathematical properties. They can be solved reliably

and e�ciently, even when they involve a very large number of variables and constraints, and involve

nonlinear, even nondi↵erentiable, functions [49].

Shortly before Markowitz published his paper on portfolio selection, George Dantzig developed the

simplex method [72], which allowed for the e�cient solution of linear programs. In 1959, Wolfe [307]

extended the simplex method to QP problems, citing Markowitz’s work as a motivating application.

This close connection between portfolio construction and optimization was no coincidence, since

Dantzig and Markowitz were colleagues at RAND.

Since then, the field of convex optimization has grown tremendously. Today, convex optimization

is a mature field with a large body of theory, algorithms, software, and applications [49]. Being

able to solve optimization problems reliably and e�ciently is crucial for portfolio construction,

especially for back-testing or simulating a proposed method on historical or synthesized data, where

portfolio construction has to be carried many times. Thus, any extension of the Markowitz objective

or additional constraints should be convex to ensure tractability. As we will see, this is hardly a

limitation in practice.
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Solvers. The dominant convex optimization problem form is now the cone program, a generalization

of linear programming that handles nonlinear objective terms and constraints [242, 49, 197, 300].

There are now a number of reliable and e�cient solvers for such problems, including open-source

ones like ECOS [85], Clarabel [124], and SCS [243], and commercial solvers such as MOSEK [9],

GUROBI [136], and CPLEX [70]. A recent open-source solver for QPs is OSQP [286].

Domain-specific languages. Convex optimization is also now very accessible to practitioners, even

those without a strong background in the mathematics or algorithms of convex optimization, thanks

to high-level domain-specific languages (DSLs) for convex optimization, such as CVXPY [2, 82],

CVX [128], Convex.jl [297], CVXR [112], and YALMIP [200]. These DSLs make it easy to specify

complex, but convex, optimization problems in a natural, human readable way. The DSLs transform

the problem from the human readable form to a lower level form (often a cone program) suitable

for a solver. These DSLs make it easy to develop convex optimization based methods, as well as

to modify, update, and maintain existing ones. As a result, CVXPY is used at many quantitative

hedge funds today, as well as in many other applications and industries. The proposed extension

of Markowitz’s portfolio construction method that we describe below is a good example of the use

of CVXPY. It is a complex problem involving nonlinear and nondi↵erentiable functions, but its

specification in CVXPY takes only a few tens of lines of clear readable code, given in appendix A.2.

The overhead of translating the human readable problem specification into a cone program is typically

small. Additionally, in some DSLs, such as CVXPY, problems can be parametrized [1], such that

they can be solved for a range of values of the parameters, making the translation overhead negligible.

Related to DSLs are modeling layers provided by some solver, such as MOSEK’s Fusion API [9],

which provides a high-level interface to the solver. Less focused on convex optimization, there are

other modeling languages such as JuMP [202] and Pyomo [140, 60] that do not verify convexity, but

provide flexibility in modeling a wide range of optimization problems, including nonconvex ones.

Code generators. Code generators like CVXGEN [223] and CVXPYgen [273] are similar to DSLs.

They support high level specification of a problem (family) but instead of directly solving the problem,

they generate custom low level code (typically C) for the problem that is specified. This code can be

compiled to a very fast and totally reliable solver, suitable for embedded real-time applications. For

example, CVXGEN-generated code guides all of SpaceX’s Falcon 9 and Falcon Heavy first stages to

their landings [35].

3.1.5 Previous work

The literature on portfolio construction is vast, and focusing on the practical implementation of

Markowitz’s ideas, we do not attempt to survey it here in detail. Instead, we highlight only a

few major developments that are relevant to our work. For a detailed overview see, e.g., [130,
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Chap. 14], [239, Chap. 6], and [69, 176, 63].

Building on Markowitz’s framework, the field of portfolio construction has undergone substantial

evolution. Notable contributions include Sharpe’s Capital Asset Pricing Model [279] and the Black-

Litterman model [33]. A pivotal figure in bringing the field to the forefront of the industry was

Barr Rosenberg, whose research evolved to become the Barra risk model [267, 281], first used for

risk modeling and then in portfolio optimization. The introduction of risk parity models [206]

brought a focus on risk distribution. Additionally, hierarchical risk parity, a recent advancement,

o↵ers a more intricate approach to risk allocation, considering the hierarchical structure of asset

correlations [78]. These developments reflect the field’s dynamic adaptation to evolving market

conditions and analytical techniques.

Software. Dedicated software helped practitioners access the solvers and DSLs mentioned earlier,

and has facilitated the wide acceptance of Markowitz portfolio construction. A wealth of software

packages have been developed for portfolio optimization, many (if not most) with Python interfaces,

both open-source and commercial. Examples range from simple web-based visualization tools to

complex trading platforms. Here we mention only a few of these software implementations.

On the simpler end Portfolio Visualizer [121] is a web-based tool that allows users to back-test

and visualize various portfolio strategies. PyPortfolioOpt [220] and Cvxportfolio [43] are Python

packages o↵ering various portfolio optimization techniques. PyPortfolioOpt includes mean-variance

optimization, Black-Litterman allocation [33], and more recent alternatives like the Hierarchical

Risk Parity algorithm [78], while Cvxportfolio [43] supports multi-period strategies. The skfolio [80]

package o↵ers similar functionality to PyPortfolioOpt, with a focus on interoperability with the

scikit-learn [251] machine learning library. Another Python implementation is proposed in [271],

where the authors introduce an approach to multicriteria portfolio optimization. Quantlib [291] is an

alternate open-source software package for modeling, trading, and risk management. Implementations

of the critical line algorithm [217, 216, 218], which finds the entire e�cient frontier of the Markowitz

problem, have also been developed [216, 15] and extended [157].

The list of commercial software is also extensive. MATLAB’s Financial Toolbox [54, 222] includes

functions for mathematical modeling and statistical analysis of financial data, including portfolio

optimization. Another example is Axioma, which on top of its popular risk model o↵ers a portfolio

optimizer [264].

Other software packages include Portfolio123 [260], PortfoliosLab [261], and PortfolioLab by

Hudson & Thames [290]. Additionally, many solvers, such as MOSEK [9, 10], provide extensive

examples of portfolio optimization problems, making them easy to use for portfolio optimization.
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3.1.6 This chapter

Our goal is to describe an extension of the basic Markowitz portfolio construction method that

includes a number of additional objective terms and constraints that reflect practical issues and

address the issue of sensitivity to inevitable forecasting errors. We give a minimal formulation that is

both simple and practical; we make no attempt to list all possible extensions that a portfolio manager

(PM) might wish to add.

While the resulting optimization problem might appear complex, containing nonlinear nondi↵er-

entiable functions, it is convex, which means it can be solved reliably and e�ciently. It can also be

specified in a DSL such as CVXPY in just a few tens of lines of clear simple code. We can solve even

large instances of the optimization problem very quickly, making it practical to carry out extensive

back-testing to predict performance or adjust parameter values. One additional advantage of our

formulation is that parameters that need to be specified are generally more interpretable than those

appearing in basic formulations. For example a PM specifies a target risk and a target turnover

instead of some parameters that are less directly related to them.

Most of the material in this chapter is not new but scattered across many sources, in di↵erent

formats, and indeed in di↵erent application fields. Some of our recommendations are widely accepted

and industry standard, but others are rarely discussed in the literature and even less commonly used

in practice.

The authors bring a diverse set of backgrounds to this chapter. Some of us have applied

Markowitz portfolio construction day-to-day in research, writing, and real portfolios. Others approach

Markowitz’s method from the perspective of optimization and control in engineering. Control systems

engineering has a long history and is widely applied in essentially all engineering applications. Most

applications of control engineering use methods based on models that are either wrong or heavily

simplified. While näıve implementations of these methods do not work well (or worse), simple sensible

modifications, similar to the ones we describe later in this chapter, work very well in practice.

These di↵erent backgrounds together can provide a new perspective and bring modern tools

to the endeavor Markowitz began. These techniques have made Markowitz’s method even more

applicable and useful to investors.

Software. We have created two companion software packages. One is designed for pedagogical

purposes, uses limited parameter testing and checking, and very closely follows the terminology and

notation of the paper. It is available at

https://github.com/cvxgrp/markowitz-reference.

The second package is a robust and flexible implementation, which is better suited for practical use.

It is available at

https://github.com/cvxgrp/cvxmarkowitz.

https://github.com/cvxgrp/markowitz-reference
https://github.com/cvxgrp/cvxmarkowitz
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Outline. In §3.2 we set up our notation, define weights and trades, and describe various objective

terms and constraints. Return and risk forecasts are covered in §3.3. In §3.4 we pull together the

material of the previous two sections to define the (generalized) Markowitz trading problem, which

we refer to as Markowitz++. In §3.5 we present some simple numerical experiments that illustrate

how the extra terms robustify the basic Markowitz trading policy, and how parameters are tuned via

back-testing to improve good performance.

3.2 Portfolio holdings and trades

This section introduces the notation and terminology for portfolio holdings, weights, and trades,

fundamental objects in portfolio construction independent of the trading strategy. We follow the

notation of [43], with the exceptions of handling the cash weight separately and dropping the time

period subscript.

3.2.1 Portfolio weights

Universe. We consider a portfolio consisting of investments (possibly short) in n assets, plus a

cash account. We refer to the set of assets we might hold as the universe of assets, and n as the size

of the universe. These assets are assumed to be reasonably liquid, and could include, for example,

stocks, bonds, or currencies.

Asset and cash weights. To describe the portfolio investments, we work with the weights or

fractions of the total portfolio value for each asset, with negative values indicating short positions.

We denote the weights for the assets as wi, i = 1, . . . , n, and collect them into a portfolio weight

vector w = (w1, . . . , wn) 2 Rn. The weights are readily interpreted: wi = 0.05 means that 5% of the

total portfolio value is held in asset i, and wk = �0.01 means that we hold a short position in asset

k, with value 1% of the total portfolio value. The dollar value of asset i held is V wi, where V is the

total portfolio value, assumed to be positive.

We denote the weight for the cash account, i.e., our cash value divided by the portfolio value, as

c. If c is negative, it represents a loan. When c > 0 we say the portfolio is diluted with cash; when

c < 0, the portfolio is margined. The dollar value of the cash account is V c.

By definition the weights sum to one, so we have

1Tw + c = 1, (3.3)

where 1 is the vector with all entries one. The first term, 1Tw, is the total weight on the non-cash

assets, and we refer to it as the total asset weight. The cash weight is one minus the total asset

weight, i.e., c = 1� 1Tw.
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Several portfolio types can be expressed in terms of the holdings. A long-only portfolio is one

with all asset weights nonnegative, i.e., w � 0 (elementwise). A portfolio with c = 0, i.e., no cash

holdings, is called fully invested. In such a portfolio we have 1Tw = 1, i.e., the total asset weight is

one. As another example, a cash-neutral portfolio is one with c = 1. For a cash-neutral portfolio we

have 1Tw = 0, i.e., the total (net) asset weight is zero.

Leverage. The leverage of the portfolio, denoted L, is

L =
nX

i=1

|wi| = kwk1.

(Several other closely related definitions are also used. Our definition is commonly referred to as the

gross leverage [8].) The leverage does not include the cash account.

In a long-only portfolio, the leverage is equal to the total asset weight. The 130-30 portfolio [189]

refers to a fully invested portfolio with leverage L = 1.6. For such a portfolio, the total weight of the

short positions (i.e., negative wi) is �0.3 and the total weight of the long positions (i.e., positive wi)

is 1.3.

Benchmark and active weights. In some cases our focus is on portfolio performance relative to a

benchmark portfolio. We let wb 2 Rn denote the weights of the benchmark. Typically the benchmark

does not include any cash weight, so 1Twb = 1. We refer to w � wb as the active weights of our

portfolio. A positive active weight on asset i, i.e., wi � wb
i
> 0, means our portfolio is over-weight

(relative to the benchmark) on asset i; a negative active weight, wi � wb
i
< 0, means our portfolio is

under-weight on asset i.

3.2.2 Holding constraints and costs

Several constraints and costs are associated with the portfolio holdings w and c.

Weight limits. Asset and cash weight limits have the form

wmin
i

 wi  wmax
i

, i = 1, . . . , n, cmin  c  cmax,

where wmin and wmax are given vectors of lower and upper limits on asset weights, and cmin and

cmax are given lower and upper limits on the cash weight. We write the asset weight inequalities

in vector form as wmin  w  wmax. We have already encountered a simple example: a long-only

portfolio has wmin = 0.

Portfolio weight limits can reflect hard requirements, for example that a portfolio must (by legal

or regulatory requirements) be long-only. Portfolio weight limits can also be used to avoid excessive
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concentration of a portfolio, or limit short positions. For example, wmax = 0.15 means that our

portfolio cannot hold more than 15% of the total portfolio value in any one asset. (Here we adopt

the convention that in a vector-scalar inequality, the scalar is implicitly multiplied by 1.) As another

example, wmin = �0.05 means that the short position in any asset can never exceed 5% of the

total portfolio value. For large portfolios it is reasonable to also limit holdings relative to the asset

capitalization, e.g., to require that our portfolio holdings of each asset are no more than 10% of the

asset capitalization.

Weight limits can also be used to capture the portfolio manager’s views on how the market will

evolve. For example, she might insist on a long position for some assets, and a short position for

some others.

When a benchmark is used, we can impose limits on active weights. For example |w�wb|  0.10

means that no asset in the portfolio can be more than 10% over-weight or under-weight.

Leverage limit. In addition to weight limits, we can impose a leverage limit,

L  Ltar, (3.4)

where Ltar is a specified maximum or target leverage value. (Other authors have suggested including

leverage as a penalty term in the objective, to model leverage aversion and identify the optimal

amount of leverage in the presence of leverage aversion [156].)

Holding costs. In general a fee is paid to borrow an asset in order to enter a short position.

Analogously we pay a borrow cost fee for a negative cash weight. We will assume these holding costs

are a linear function of the negative weights, i.e., of the form

�hold(w, c) = (short)T (�w)+ + borrow(�c)+, (3.5)

where (a)+ = max{a, 0} denotes the nonnegative part, applied elementwise and in its first use above.

Here short � 0 is the vector of borrow cost (rates) for the assets, and borrow � 0 is the borrow cost

for cash.

Other holding constraints. There are many other constraints on weights that might be imposed,

some convex, and others not. A concentration limit is an example of a useful constraint that is convex.

It states that the sum of the K largest absolute weights cannot exceed some limit. As a specific

example, we can require that no collection of five assets can have a total absolute weight of more

than 30% [257, 10]. A minimum nonzero holding constraint is an example of a commonly imposed

nonconvex constraint. It states that any nonzero weight must have an absolute value exceeding

some given minimum, such as 0.5%. (This one is easily handled using a heuristic based on convex

optimization; see §3.4.3.)
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3.2.3 Trades

Trade vector. We let wpre and cpre denote the pre-trade portfolio weights, i.e., the portfolio

weights before we carry out the trades to construct the portfolio given by w and c. We need the

pre-trade weights to account for transaction costs. We refer to

z = w � wpre, (3.6)

the current weights minus the previous ones, as the (vector of) trades or the trade list. These trades

have a simple interpretation: zi = 0.01 means we buy an amount of asset i equal in value to 1%

of our total portfolio value, and zi = �0.03 means we sell an amount of asset i equal to 3% of the

portfolio value.

Since 1Twpre + cpre = 1, we have

c = cpre � 1T z, (3.7)

i.e., the post-trade cash weight is the pre-trade cash weight minus the net weight of the trades. This

does not include holding and transaction costs, discussed below.

Turnover. The quantity

T =
1

2

nX

i=1

|zi| =
1

2
kzk1

is the turnover. Here too, several other di↵erent but closely related definitions are also used, for

example the minimum of the total weight bought and the total weight sold [130, Chap. 16]. A

turnover T = 0.01 means that the average of total amount bought and total amount sold is 1% of

the total portfolio value. The turnover is often annualized, by multiplying by the number of trading

periods per year.

3.2.4 Trading constraints and costs

We typically have constraints on the trade vector z, as well as a trading cost that depends on z.

Trade limits. Trade limits impose lower and upper bounds on trades, as

zmin  z  zmax,

where zmin and zmax are given limits. These trade limits can be used to limit market participation,

defined as the ratio of the magnitude of each trade to the trading volume, using, e.g.,

|z|  0.05v, (3.8)
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where v 2 Rn is the trading volumes of the assets, expressed as multiples of the portfolio value. This

constraint limits our participation for each asset to be less than 5%. (It corresponds to trade limits

zmax = �zmin = 0.05v.) Since the trading volumes are not known when z is chosen, we use a forecast

instead of the realized trading volumes.

Turnover limit. In addition to trade limits, we can limit the turnover as

T  T tar, (3.9)

where T tar is a specified turnover limit.

Trading cost. Trading cost refers to the cost of carrying out a trade. For example, if we buy a

small quantity of an asset, we pay the ask price, while if we sell an asset, we receive the bid price.

Since the nominal price of an asset is the midpoint between the ask and bid prices, we can think of

buying or selling the asset as doing so at the nominal price, plus an additional positive cost that is

the trade amount times one-half the bid-ask spread. This bid-ask spread transaction cost has the

form
nX

i=1

spread
i

|zi| = (spread)T |z|,

where spread 2 Rn is the vector of one-half the asset bid-ask spreads (which are all positive). This is

the transaction cost expressed as a fraction of the portfolio value. For small trades this is a reasonable

approximation of transaction cost.

For larger trades we ‘eat through’ the order book. To buy a quantity of an asset, we buy each

ask lot, in order from lowest price, until we fill our order. An analogous situation occurs when selling.

This means that we end up paying more per share than the ask price when buying, or receiving less

than the bid price when selling. This phenomenon is called market impact.

A useful approximation of transaction cost that takes market impact into account is

�trade(z) = (spread)T |z|+ (impact)T |z|3/2, (3.10)

where the first term is the bid-ask spread component of transaction cost, and the second models

the market impact, i.e., the additional cost incurred as the trade eats through the order book. The

vector impact has positive entries and typically takes the form

impact
i

= asiv
�1/2
i

,

where si is the volatility of asset i over the trading period, vi is the volume of market trading, expressed

as a multiple of the portfolio value, and a is a constant on the order of one; see [130, 199, 295, 221]

and [43, §2.3]. Evidently the transaction cost increases with volatility, and decreases with market
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volume. Several other approximations of transaction cost are used [6, 94].

Liquidation cost. Suppose we liquidate the portfolio, i.e., close out all asset positions, which

corresponds to the trade vector z = �w. The liquidation cost is

�trade(�w) = (spread)T |w|+ (impact)T |w|3/2.

If the liquidation is carried out over multiple periods, the bid-ask term stays the same, but the market

impact term decreases. For this reason a common approximation of the liquidation cost ignores the

market impact term. A liquidation cost constraint has the form

(spread)T |w|  `max, (3.11)

where `max is a maximum allowable liquidation cost, such as 1%. This is a weight constraint; it

limits our holdings in less liquid assets, which have higher bid-ask spreads. It can be interpreted as a

liquidity-weighted leverage (taking the bid-ask spread as a proxy for liquidity). When all assets have

the same bid-ask spread, the liquidation constraint reduces to a leverage constraint. For example

with all bid-ask spreads equal to 0.001 (i.e., 10 basis points or bps) and a maximum liquidation

cost `max = 0.01 (i.e., 1% of the total portfolio value), the liquidation cost limit (3.11) reduces to a

leverage limit (3.4) with Ltar = 10. The connection between liquidity and leverage is explored further

in [88].

Transaction cost forecasts. When the trades z are chosen, we do not know the bid-ask spreads,

the volatilities, or the volumes. Instead we use forecasts of these quantities in (3.8), (3.10), and (3.11).

Simple forecasts, such as a trailing average or median of realized values, are typically used. More

sophisticated forecasts take can into account calendar e↵ects such as seasonality, or the typically low

trading volume the day after Thanksgiving.

3.3 Return and risk forecasts

3.3.1 Return

Gross portfolio return. We let ri denote the return, adjusted for dividends, splits, and other

corporate actions, of asset i over the investment period. We collect these asset returns into a return

vector r = (r1, . . . , rn) 2 Rn. The portfolio return from asset i is riwi. We let rrf denote the risk-free

interest rate, so the return in the cash account is rrfc. The (gross) total portfolio return is then

R = rTw + rrfc.



CHAPTER 3. MARKOWITZ PORTFOLIO CONSTRUCTION AT SEVENTY 80

This gross return does not include holding or trading costs. A closely related quantity is the excess

return, the portfolio return minus the risk-free return, R� rrf = rTw + rrf(c� 1).

Net portfolio return. The net portfolio return is the gross return minus the holding costs and

transaction costs,

Rnet = R� �hold(w)� �trade(z). (3.12)

Active return. The active portfolio return is the return relative to a benchmark portfolio,

rTw + rrfc� rTwb = rT (w � wb) + rrfc.

If we subtract holding and trading costs we obtain the net active portfolio return.

Cash as slack. Since we do not know but only forecast the bid-ask spread, volatility, and volume,

which appear in the transaction cost (3.10) (which is itself only an approximation) we should consider

the post-trade cash c in (3.7) as an approximation that uses a forecast of holding and transaction

costs, not the realized holding and transaction costs. We do not expect the realized post-trade cash

weight to be exactly c.

3.3.2 Probabilistic asset return model

When we choose the trades z we do not know the asset returns r. Instead, we model r as a multivariate

random variable with mean µ 2 Rn and covariance matrix ⌃ 2 Sn

++ (the set of symmetric positive

definite n⇥ n matrices),

E r = µ, E(r � µ)(r � µ)T = ⌃.

The entries of the mean µ are often referred to as trading signals [154]. The asset return mean

and covariance are forecasts, as described below. The asset return volatilities s 2 Rn appearing

in the transaction cost model (3.10) can be expressed as s = diag(⌃)1/2, where the squareroot is

elementwise.

Expected return and risk. With this statistical model of r, the portfolio return R is a random

variable with mean R̄ = ER and variance �2 = varR given by

R̄ = µTw + rrfc, �2 = wT⌃w.

The risk of the portfolio is defined as the standard deviation of the portfolio return, i.e., �.

Similarly, the active return Ra is a random variable with mean and variance

R̄a = µT (w � wb) + rrfc = R̄� µTwb, (�a)2 = (w � wb)T⌃(w � wb),
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and the active risk is �a. The risk and active risk are often given in annualized form, obtained by

multiplying them by the squareroot of the number of periods per year.

The parameters µ and ⌃ are estimates or forecasts of the statistical model of asset returns, which

is itself an approximation. For this reason the risk � is called the ex-ante risk, to distinguish it from

the standard deviation of the realized portfolio returns when trading, the ex-post risk. Similarly we

refer to �a as the ex-ante active risk.

Optimizing expected return and risk. We have two objectives, high expected return and low

risk. Perhaps the most common method for combining these objectives is to form a risk-adjusted

return,

R̄� ��2,

where � > 0 is the risk aversion parameter. Maximizing risk-adjusted return (possibly with other

objective terms, and subject to constraints) gives the desired portfolio. Increasing � gives us a

portfolio with lower risk and also lower expected return. The risk aversion parameter allows us to

explore the risk-return trade-o↵. This risk-adjusted return approach became popular in part because

the resulting optimization problem is typically a quadratic program (QP), for which reliable solvers

were developed even in the 1960s.

Another approach is to maximize expected return (possibly with other objective terms), subject

to a risk budget or risk target constraint

�  �tar. (3.13)

(The corresponding optimization problem is not a QP, but is readily handled by convex optimization

solvers developed in the 1990s [198, 241, 288, 294].) This formulation seems more natural, since a

portfolio manager will often have a target risk in her mind, e.g., 8% annualized. This is the basic

formulation that we recommend.

There are many other ways to combine expected return and risk. For example, we can maximize

the return/risk ratio, called the Sharpe ratio (with no benchmark) or information ratio (with a

benchmark). This problem too can be solved via convex optimization, at least when the constraints

are simple [52].

3.3.3 Factor model

In practice, and especially for large universes, it is common to use a factor model for the returns.

The factor return model, with k factors (typically with k ⌧ n), has the form

r = Ff + ✏, (3.14)
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where F 2 Rn⇥k is the factor loading matrix, f 2 Rk is the vector of factor returns, and ✏ 2 Rn is

the idiosyncratic return. The term Ff is interpreted as the component of asset returns explainable

or predicted by the factor returns.

At portfolio construction time the factor loading matrix F is known, and the factor return f

and idiosyncratic return ✏ are modeled as uncorrelated random variables with means and covariance

matrices

E f = f̄ , cov f = ⌃f, E ✏ = ✏̄, cov ✏ = D,

where D is diagonal (with positive entries). The entries ✏̄, the means of the idiosyncratic returns, are

also referred to as the alphas, especially when there is only one factor which is the overall market

return. They are the part of the asset returns not explained by the factor returns.

With the factor model (3.14) the asset return mean and covariance are

µ = F f̄ + ✏̄, ⌃ = F⌃fFT +D.

The return covariance matrix in a factor model has a special form, low rank plus diagonal. The

portfolio return mean and variance are

R̄ = (F f̄)Tw + ✏̄Tw + rrfc, �2 = (FTw)T⌃f(FTw) + wTDw.

The factor returns are constructed to have explanatory power for the returns of assets in our

universe. For equities, they are typically the returns of other portfolios, such as the overall market

(with weights proportional to capitalization), industries, and style portfolios like the celebrated

Fama-French factors [101, 102]. For bonds, the factors are typically constructed from yield curves,

interest rates, and spreads. These traditional factors are interpretable.

Factors can also can be constructed directly from previous realized asset returns using methods

such as principal component analysis (PCA) [14, 13, 190, 191, 255, 254]. Aside from the first principal

component, which typically is close to the market return, these factors are less interpretable.

Factor and idiosyncratic returns. A factor model gives an alternative method to specify the

expected return as µ = F f̄ + ✏̄, where f̄ is a forecast of the factor returns and ✏̄ is a forecast of the

idiosyncratic returns, i.e., the asset alphas. One common method uses only a forecast of the factor

returns, with ✏̄ = 0, so µ = F f̄ . A complementary method assumes zero factor returns, so we have

µ = ✏̄, i.e., the mean asset returns are the same as the idiosyncratic asset mean returns.

Factor betas and neutrality. Under the factor model (3.14), the covariance of the portfolio

return R with the factor returns f is the k-vector

cov(R, f) = ⌃fFTw.
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The betas of the portfolio with respect to the factors divide these covariances by the variance of the

factors,

� = diag(sf)�2⌃fFTw,

where sf = diag(⌃f)1/2 is the vector of factor return volatilities.

The constraint that our portfolio return is uncorrelated (or has zero beta) with the ith factor

return fi, under the factor model (3.14), is

cov(R, f)i = (⌃fFTw)i = 0. (3.15)

This is referred to as factor neutrality (with respect to the ith factor). It is a simple linear equality

constraint, which can be expressed as aTw = 0, where a is the ith column of F⌃f. Factor neutrality

constraints are typically used with active weights. In this case, factor neutrality means that the

portfolio beta matches the benchmark beta for that factor. This also is a linear equality constraint

that can be expressed as �i = �b
i
, with �b the benchmark betas.

Advantages of a factor model. Especially with large universes, the factor model (specified by F ,

⌃f, and D) can give a better estimate of the return covariance, compared to methods that directly

estimate the n⇥ n matrix ⌃ [163]. Another substantial advantage is computational. By exploiting

the low-rank plus diagonal structure of the return covariance with a factor model, we can reduce the

computational complexity of solving the Markowitz optimization problem from O(n3) flops (without

exploiting the factor model) to O(nk2) flops (exploiting the factor form). These computational

savings can be dramatic, e.g., for a whole world portfolio with n = 10000 and k = 100, where we

obtain a 10000 fold decrease in solve time; see §3.5.6.

3.3.4 Return and risk forecasts

Here we briefly discuss the forecasting of µ and ⌃ (or F , ⌃f, and D in a factor model). Markowitz

himself did not address the question of estimating µ and ⌃; when asked by practitioners how one

should choose these forecasts, his reply was [276]

“That’s your job, not mine.”

It is well documented that poor or näıve estimates of these, e.g., the sample mean and covariance,

can yield poor portfolio performance [228]. But even reasonable forecasts will have errors, which can

degrade performance. We show some methods to mitigate this forecast uncertainty in §3.3.5.

Asset returns estimate. The expected returns vector µ is by far the most important parameter

in the portfolio construction process, and methods for estimating it, or the factor and idiosyncratic

return means are for obvious reasons in general proprietary. It is also the most challenging data to

estimate. There is no consensus on how to estimate the mean returns, and the literature is vast.
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Regularization methods can improve mean estimates. As an example, the Black-Litterman

model [33] allows a portfolio manager to incorporate her views on how the expected returns di↵er

from the market consensus, and in essence acts as a form of regularization of the portfolio toward

the market portfolio. Another method that serves implicitly as regularization is winsorization, where

the mean estimates are clipped when they go outside a specified range [305], [130, Chap. 14]. Yet

another method is cross-sectionalization, where the preliminary estimate of returns µ is replaced with

µ̃, the same values monotonically mapped to (approximately) a Gaussian distribution [130, Chap.

14].

Return covariance estimate. There are many ways to estimate the covariance matrix, with or

without a factor model. Approaches that work well in practice include the exponentially weighted

moving average (EWMA) [245], dynamic conditional correlation (DCC) [92], and iterated EWMA [18].

For a detailed discussion on how to estimate a covariance matrix for financial return data, see [163]

and the references therein.

3.3.5 Making return and risk forecasts robust

In this section we address methods to mitigate the impact of forecast errors in return and covariance

estimation, which can lead to poor performance. This directly addresses one of the main criticisms

of the Markowitz method, that it is too sensitive to estimation errors. Here, we briefly review

how to address robust return mean and covariance estimation, and refer the reader to [43, §4.3]
and [99, 296, 71] for more detailed discussions.

Robust return forecast. We model our uncertainty in the mean return vector by giving an

interval of possible values for each return mean. We let µ 2 Rn denote our nominal estimate of the

return means, and we take the nonnegative vector ⇢ 2 Rn

+ to describe the half-width or radius of the

uncertainty intervals. Thus we imagine that the return can be any vector of the form µ+ �, where

|�i|  ⇢i. For example µi = �0.0010 and ⇢i = 0.0005 means that the mean return for asset i lies in

the range [�15,�5] bps.

We define the worst-case mean portfolio return as the minimum possible mean portfolio return

consistent with the given ranges of asset return means:

Rwc = min{(µ+ �)Tw | |�|  ⇢}.

We can think of this as an adversarial game. The portfolio manager (PM) chooses the portfolio w,

and an adversary then chooses the worst mean return consistent with the given uncertainty intervals.

This second step has an obvious solution: We choose µi�⇢i when wi � 0, and we choose µi+⇢i when

wi < 0. In words: For long positions the worst return is the minimum possible; for short positions
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the worst return is the maximum possible. With this observation, we obtain a simple formula for the

worst-case portfolio mean return,

Rwc = R̄� ⇢T |w|. (3.16)

The first term is the nominal mean return; the second term, which is nonpositive, gives the degradation

of return induced by the uncertainty. We refer to ⇢T |w| as the portfolio return forecast error penalty

in our return forecast. The return forecast error penalty has a nice interpretation as an uncertainty-

weighted leverage.

When the portfolio is long-only, so w � 0, the worst-case asset returns are obvious: they simply

take their minimum values, µ � ⇢. In this case the worst-case portfolio mean return (3.16) is the

usual mean portfolio return, with each nominal asset return reduced by its uncertainty.

The return forecast uncertainties ⇢ can be chosen by several methods. One simple method is to

set all entries the same, and equal to some quantile of the entries of |µ|, such as the 20th percentile.

A more sophisticated method relies on multiple forecasts of the returns, and sets µ as the mean or

median forecast, and ⇢ as some measure of spread, such as standard deviation, of the forecasts.

Robust covariance forecast. We can also consider uncertainty in the covariance matrix. We let

⌃ denote our nominal estimate of the covariance matrix. We imagine that the covariance matrix

has the form ⌃+� where � 2 Sn (the set of symmetric n⇥ n matrices) where the perturbation �

satisfies

|�ij |  %(⌃ii⌃jj)
1/2,

where % 2 [0, 1) defines the level of uncertainty. For example, % = 0.04 means that the diagonal

elements of the covariance matrix can change by up to 4% (so the volatilites can change by around

2%), and the asset return correlations can change by up to around 4%. (You should not trust anyone

who claims that his asset return covariance matrix estimate is more accurate than this.)

We define the worst-case portfolio risk as the maximum possible risk over covariance matrices

consistent with our uncertainty set,

(�wc)2 = max{wT (⌃+�)w | |�ij |  %(⌃ii⌃jj)
1/2}.

This can be expressed analytically as [43, §4.3]

(�wc)2 = �2 + %

 
nX

i=1

⌃1/2
ii

|wi|
!2

. (3.17)

The second term is the covariance forecast error penalty. It has a nice interpretation as an additive

regularization term, the square of a volatility-weighted leverage. The worst-case risk can be expressed
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using Euclidean norms as

�wc =
���
⇣
�,
p
%(diag(⌃)1/2)T |wi|

⌘���
2
. (3.18)

When the portfolio is long-only, the worst-case risk (3.17) can be simplified. In this case, the

worst-case risk is the risk using the covariance matrix ⌃+ %ssT , where s = diag(⌃)1/2 is vector of

asset volatilities, under the nominal covariance.

3.4 Convex optimization formulation

3.4.1 Markowitz problem

In this section we assemble the objective terms and constraints described in §3.2 and §3.3 into one

convex optimization problem. We obtain the Markowitz problem

maximize Rwc � �hold�hold(w, c)� �trade�trade(z)

subject to 1Tw + c = 1, z = w � wpre,

wmin  w  wmax, L  Ltar, cmin  c  cmax,

zmin  z  zmax, T  T tar,

�wc  �tar,

(3.19)

with variables w 2 Rn and c 2 R, and positive parameters �hold and �trade that allow us to scale the

holding and transaction costs, respectively. Despite the nonlinear and nondi↵erentiable functions

appearing in the objective and constraints, this is a convex optimization problem, which can be very

reliably and e�ciently solved. We can add other convex objective terms to this problem, such as

factor neutrality or liquidation cost limit, or work with active risk and return with a benchmark.

The objective is our forecast of the (robustified, worst-case) net portfolio return, with the holding

and transaction costs scaled by the parameters �hold and �trade, respectively. The first line of

constraints relate the pre-trade portfolio, which is given, and the post-trade portfolio, which is to

be chosen. The second line of constraints are weight limits, and the third line contains the trading

constraints. The last line of constraints is the (robustified, worst-case) risk limit.

Data. We divide the constants that need to be specified in the problem (3.19) into two groups, data

and parameters, although the distinction is not sharp. Data are quantities we observe (such as the

previous portfolio weights) or forecast (such as return means, market volumes, or bid-ask spreads):

• Pre-trade portfolio weights wpre and cpre.

• Asset return forecast µ.

• Risk model ⌃, or for a factor model, F , ⌃f, and D.
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• Holding cost parameters short and borrow.

• Trading cost parameters spread and impact (which in turn depend on the forecast bid-ask

spreads, asset volatilities, and market volume).

Parameters. Parameters are quantities that we choose in order to obtain good investment perfor-

mance, or to reflect portfolio manager preferences, or to comply with legal requirements or regulations.

These are

• Target risk �tar.

• Holding and trading scale factors �hold and �trade.

• Weight and leverage limits wmin, wmax, cmin, cmax, and Ltar.

• Trade and turnover limits zmin, zmax, and T tar.

• Mean and covariance forecast uncertainties ⇢ and %.

We list the mean and covariance forecast uncertainties as parameters since they are closer to being

chosen than measured or estimated. When the mean return uncertainties are chosen as described

above from a collection of return forecasts, they would be closer to data.

Initial default choices for parameters. The target risk, and the weight, leverage, trade, and

turnover limits are interpretable and can be assigned reasonable values by the PM. The return and

risk uncertainty parameters ⇢ and % can be chosen as described above. The hold and trade scale

factors can be chosen to be around one.

To improve performance the PM will want to adjust or tune these parameter values around their

natural or default values, as discussed in §3.5.4.

3.4.2 Softening constraints

The Markowitz problem (3.19) includes a number of constraints. This can present two challenges

in practice. First, it can lead to substantial trading, for example to satisfy our leverage or ex-ante

worst-case risk limits, even when they would have been violated only slightly, which can lead to poor

performance due to excessive trading. Second, the problem can be infeasible, meaning there is no

choice of the variables that satisfy all the constraints. This can complicate back-tests or simulations,

as well as running the trading policy in production, where such infeasiblilities naturally occur most

frequently during periods of market stress.
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Soft constraints. Here we explain a standard method in optimization, in which some of the

constraints can be softened, which means we allow them to be somewhat violated, if needed. In

optimization, softness refers to how much we care about di↵erent values of an objective. We can

think of the objective as infinitely soft: We will accept any objective value, but we prefer larger

values (if we are maximizing). We can think of constraints as infinitely hard: We will not accept

any violation of them, even if it is only by a small amount. Soft constraints, described below, are in

between. They should normally act as constraints, but when needed, they can be violated. When a

soft constraint is violated, and by how much, depends on our priorities, with high priority meaning

that the constraint should be violated only when absolutely necessary.

Consider a (hard) constraint such as f  fmax. This means that we will not accept any choice of

the variables for which f > fmax. To make it a soft constraint, we remove the constraint from the

problem and form a penalty term

�(f � fmax)+

which we subtract from the objective, when we are maximizing. The number (f � fmax)+ is the

violation of the original constraint f  fmax. The positive parameter � is called the priority parameter

associated with the softened constraint. In this context, we refer to the parameter fmax as a target

for the value of f , not a limit. With the softened constraint, we can accept variable choices for which

f > fmax, but the optimizer tries to avoid this given the penalty paid (in the objective) when this

occurs. Softening constraints preserves convexity of a problem.

Markowitz problem with soft constraints. A number of constraints in (3.19) should be left as

(hard) constraints. These include the constraints relating the proposed and previous weights, i.e., the

first line of constraints in (3.19). When the portfolio is long-only, the constraint w � 0 should be left

as a hard constraint, and similarly for a constraint such as c � 0, i.e., that we do not borrow cash.

When a leverage limit is strict or imposed by a mandate, it should be left as a hard constraint; when

it is imposed by the portfolio manager to improve performance, or more likely, to help her avoid

poor outcomes, it can be softened.

The other constraints in (3.19) are candidates for softening. Weight and trade limits, including

leverage and turnover limits, should be softened (except in the cases described above). The worst-case

risk limit �  �tar should be softened, with a risk penalty term

�risk(� � �tar)+

subtracted from the objective. When the associated priority parameter �risk is chosen appropriately,

this allows us to occasionally violate our risk limit a bit when the violation is small. We refer to the

softened Markowitz problem as the Markowitz++ problem.

One nice attribute of the Markowitz++ problem is that it is always feasible; the choice z = 0, i.e.,
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no trading, is always feasible, even when it is a poor choice. This means that the softened Markowitz

problem can be used to define a trading policy that runs with little or no human intervention (with,

however, any soft constraints that exceed their targets reported to the portfolio manager).

Priority parameters. When we soften the worst-case risk, leverage, and turnover constraints, we

gain several more parameters,

�risk, �lev, �turn.

Evidently the larger each of these priority parameters is, the more reluctant the optimizer is to violate

it. (Here we anthropomorphize the optimization problem solver.) When the priority parameters are

large, the associated soft constraints are e↵ectively hard. Beyond these observations, however, it is

hard to know what values should be used.

Choosing priority parameters. Here we describe a simple method to obtain reasonable useful

initial values for the priority parameters associated with softened constraints. Our method is based

on Lagrange multipliers or dual variables. Suppose we solve a problem with hard constraints, and

obtain optimal Lagrange multipliers for each of the constraints. If we use these Lagrange multipliers

as priorities in a softened version of the problem, all the original constraints will be satisfied. Roughly

speaking, the Lagrange multipliers give us values of priorities for which the soft constraints are

e↵ectively hard. We would want to use priority values a bit smaller, so that the original constraints

can occasionally be violated.

Now we describe the method in detail. We start by solving multiple instances of the problem

with hard constraints, for example in a back-test, recording the values of the Lagrange multipliers

for each problem instance (when the problem is feasible). We then set the priority parameters to

some quantile, such as the 80th percentile, of the Lagrange multipliers. With this choice of priority

parameters, we expect (very roughly) the original constraints to hold around 80% of the time. For

hard constraints that are only occasionally tight, another method for choosing the priority parameters

is as a fraction of the maximum Lagrange multiplier observed.

Using this method we can obtain reasonable starting values of the priority parameters. The final

choice of priority parameters is done by back-testing and parameter tuning, starting from these

reasonable values, as discussed in §3.4.4.

3.4.3 Nonconvex constraints and objectives

All objective terms and constraints discussed so far are convex, and the Markowitz problem (3.19),

and its softened version, are convex optimization problems. They can be reliably and e�ciently

solved.

Some other constraints and objective terms are not convex. The most obvious one is that the

trades must ultimately involve an integer number of shares. As a few other practical examples, we



CHAPTER 3. MARKOWITZ PORTFOLIO CONSTRUCTION AT SEVENTY 90

might limit the number of nonzero weights, or insist on a minimum nonzero weight absolute value.

When these constraints are added to (3.19), the problem becomes nonconvex. Great advances have

been made in solvers that handle so-called mixed-integer convex problems [180], and these can be

used to solve these portfolio construction problems. The disadvantage is longer solve time, compared

to a similar convex problem, and sometimes, dramatically longer solve time if we insist on solving

the problem to global optimality. A convex portfolio construction problem that can be solved in a

small fraction of a second can take many seconds, or even minutes or more, to solve when nonconvex

constraints are added.

For production, where the problem is solved daily, or even hourly, this is fine. The slowdown

incurred with nonconvex optimization is however very bad for back-testing and validation, where

many thousands, or hundreds of thousands, of portfolio construction problems are to be solved. One

sensible approach is to carry out back-testing using a convex formulation, so as to retain the speed

and reliability of a convex optimization, and run a nonconvex version in production. As a variant on

this, back-tests using convex optimization can be used for parameter search, and one final back-test

with a nonconvex formulation can be used to be sure the results are close. Running backtests using

only convex constraints works because the nonconvex constraints typically only have a small impact

on the portfolio and its performance.

Heuristics based on convex optimization. Essentially all solvers for nonconvex problems that

attempt to find a global solution rely on convex optimization under the hood [147]. The issue is

that a very large number of convex optimization problems might need to be solved to find a global

solution.

But many nonconvex constraints can be handled heuristically by solving just a few convex

optimization problem. As a simple example we might simply round the numbers of shares in a trade

list to an integer. This rounding should have little e↵ect unless the portfolio value is very small.

Other nonconvex constraints are readily handled by heuristics that involve solving just a handful

of convex problems. One general method is called relax-round-solve [83]. We illustrate this method

to handle the constraint that the minimum nonzero weight absolute value is 0.001 (10 bps). First we

solve the problem ignoring this constraint. If the weights satisfy the constraint, we are done (and the

choice is optimal). If not, we set a threshold and divide the assets into those with absolute weight

smaller than the threshold, those with weights larger than the threshold, and those which are less

than minus the threshold. We then add constraints to the original problem, setting the weights to

zero, more than 0.001, and less than �0.001, depending on the weights found in the first problem.

These are convex constraints, and when we solve the second time we are guaranteed to satisfy the

nonconvex constraint. We thus solve two convex problems. In the first one, we essentially decide

which weights will be zero, which will be more than the minimum nonzero long weight, and which

will be short more than the minimum. In the second one we adjust all the weights, ensuring that the

minimum absolute nonzero weight constraint holds.
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3.4.4 Back-testing and parameter tuning

Back-testing. Back-testing refers to simulating a trading strategy using historical data. To do

this we provide the forecasts for all quantities needed, including the mean return and covariance, for

Markowitz portfolio construction in each period. In each period these forecasts, together with the

parameters, are sent in to the Markowitz portfolio construction method, which determines a set of

trades. We then use the realized values of return, volatility, bid-ask spread, and market volume to

compute the (simulated) realized net return Rnet
t

, where the subscript gives the time period. Note

that while the Markowitz trading engine uses forecasts of various quantities, the simulation uses the

realized historical values. This gives a reasonably realistic approximation of what the result would

have been, had we actually carried out this trading. (It is still only an approximation, since it uses

our particular trading cost model. Of course a more complex or realistic trading cost model could be

used for simulation.) The back-test simulation can also include practical aspects like trading only an

integer number of shares or blocks of shares. The simulation can also include external cash entering

or leaving the portfolio, such as liabilities that must be paid each period.

In the simulation we log the trajectory of the portfolio. We can compute various quantities of

interest such as the realized return, volatility, Sharpe or information ratio, turnover, and leverage,

all potentially over multiple time periods such as quarters or years. We can determine the portfolio

value versus periods, given by

Vt = V1

t�1Y

⌧=1

(1 +Rnet
⌧

),

where V1 is the portfolio value at period t = 1. From this we can evaluate quantities like the average

or maximum value of drawdown over quarters or years.

Variations. The idea of back-testing or simulating portfolio performance can be used for several

other tasks. In one variation on a back-test called a stress test, we use historical data modified to be

more challenging, e.g., lower returns or higher costs than actually occurred.

Another variation called performance forecasting uses data that are simulated or generated,

starting from the current portfolio out to some horizon like one year in the future, or the end of

current fiscal year. We generate some number of possible future values of quantities such as returns,

along with the corresponding forecasts of them, and simulate the performance for each of these. This

gives us an idea of what we can expect our future performance to be, for example as a range of values

or quantiles.

Yet another variation is a retrospective what-if simulation. Here we take a live portfolio and go

back, say, three months. Starting from the portfolio holdings at that time, we simulate forward to

the present, after making some changes to our trading method, e.g., modifying some parameters.

The fact that the current portfolio value would be higher (according to our simulation) if the PM

had reduced the target risk three months ago is of course not directly actionable. But it still very



CHAPTER 3. MARKOWITZ PORTFOLIO CONSTRUCTION AT SEVENTY 92

useful information for the PM.

Parameter tuning. Perhaps the most important use of back-testing is to help the PM choose

parameter values in the Markowitz portfolio construction problem. While some parameters, like the

target risk, are given, others are less obvious. For example, how should we choose �trade? The default

value of one is our best guess of what the single period transaction cost will be. But perhaps we get

better performance with �trade = 2, which means, roughly speaking, that we are exaggerating trading

cost by a factor of two. The result, of course, is a reduction in trading compared to the default value

one. This will result in smaller realized transaction costs, but also, possibly, higher return, or smaller

drawdown. The back-test will reveal what would happen in this case (to the limits of the back-test

accuracy).

To choose among a set of choices for parameters, we carry out a back-test with each set, and

evaluate multiple metrics, such as realized returns, volatility, and turnover. Our optimization problem

contains target values for these, based on our forecasts and models; in a back-test we obtain the

ex-post or realized values of these metrics.

To make a final choice of parameters, we must scalarize our metrics, i.e., create one scalar metric

from them, so we can choose among di↵erent sets of parameter values. For example we might choose

to maximize Sharpe ratio, subject to other metrics being within specified bounds. Or we could form

some kind of weighted combination of the individual metrics.

At the very minimum, a PM should always carry out back-tests in which all of her chosen

parameters are, one by one, increased or decreased by, say, 20%. Even with 10 parameters, this

requires only 20 back-tests. If any of these back-tests results in substantially improved performance,

she will need to explain or defend her choices.

This simple method of changing one parameter at a time can be extended to carry out a crude

but often e↵ective parameter search. We cycle over the parameters, increasing or decreasing each and

carrying out a back-test. When we find a new set of parameter values that has better performance

than the current set of values, we take it as our new values. This continues until increasing or

decreasing each parameter value does not improve performance.

Another traditional method of parameter tuning is gridding. We choose a small number of

candidate values for each parameter, and then carry out a back-test for each combination, evaluating

multiple performance metrics. Of course this is practical only when we are choosing just a few

parameters, and we consider only a few candidate values for each one. Gridding is often carried out

with a first crude parameter gridding, with the candidate values spaced by a factor of ten or so; then,

when good values of these parameters are found, a more refined grid search is used to focus in on

parameters near the good ones found in the first crude search. In any case there is no reason to find

or specify parameter values very accurately; specifying them to even 10% is not needed. For one

thing, the back-test itself is only an approximation. If a back-test reveals that �trade = 2.1 works

well, but that �trade = 1.9 and �trade = 2.3 work poorly, it is very unlikely that our trading method
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will work well in practice. Similar to the way we want our trading policy to be robust to variations

in the input data, we also want it to be robust to variation in the parameters.

More sophisticated parameter search methods can also be used. Many such methods build a

statistical model of the good parameter values found so far, and obtain new values to try by sampling

from the distribution; see, e.g., [205] for more discussion. Another option is to obtain not just the

value of some composite metric, but also its gradient with respect to the parameters. This very

daunting computation can be carried out by automatic di↵erentiation systems that can di↵erentiate

through the solution of a convex optimization problem, such as CVXPYlayers [1, 42].

3.5 Numerical experiments

In this section we present numerical experiments that illustrate the ideas and methods discussed

above. In the first set of experiments, described in §3.5.2, we show the e↵ect of several constraints

and objective terms that serve as e↵ective regularizers and improve performance. In §3.5.4 we

illustrate how parameter tuning via back-tests can improve performance, and in §3.5.6 we show how

the methods we describe scale with problem size.

3.5.1 Data and back-tests

Data. Throughout the experiments we use the same data set, which is based on the stocks in the

S&P 100 index. We use daily adjusted close price data from 2000-01-04 to 2023-09-22. We exclude

stocks without data for the entire period, and acknowledge that this inherent survivorship bias in

the data set would make it unsuitable for a real portfolio construction method, but it is su�cient for

our experiment, which is only concerned with the relative performance of the di↵erent methods. We

end up with a universe of n = 74 assets. In addition to the price data, we use bid-ask spread data to

estimate the trading costs, as well as the e↵ective federal funds rate [104] for short term borrowing

and lending. We make the data set available with the code for reproducibility and experimentation at

https://github.com/cvxgrp/markowitz-reference.

Mean prediction. Simple estimates of the means work poorly, so in the spirit of [43], we use

synthetic return predictions to simulate a proprietary mean prediction method. For each asset, the

synthetic returns for each day are given by

r̂t = ↵(rt + ✏t),

where ✏t is a zero-mean Gaussian noise term with variance chosen to obtain a specified information

coe�cient and rt is the mean return of the asset in the week starting on day t. We take the noise

variance to be �2(1/↵�1), where ↵ is the square of the information coe�cient, and �2 is the variance

https://github.com/cvxgrp/markowitz-reference
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of the return. (These mean predictions are done for each asset separately.) We choose an information

coe�cient of
p
↵ = 0.15. Using this parameterization, the sign of the return is predicted correctly in

52.1% of all observations, with this number ranging from 50.3% to 54.1% for the individual assets.

Covariance prediction. For the covariance prediction, we use a simple EWMA estimator, i.e.,

the covariance matrix at time t is estimated as

⌃̂t = ↵t

tX

⌧=1

�t�⌧r⌧r
T

⌧
,

where

↵t =

 
tX

⌧=1

�t�⌧

!�1

=
1� �

1� �t

is the normalization constant, and � 2 (0, 1) is the decay factor. (We use the second moment as

the covariance, since the contribution from the mean term is negligible.) We use a half-life of 125

trading days, which corresponds to a decay factor of � ⇡ 0.994. We note that the specific choice of

the half-life does not change the results of the experiments qualitatively.

Spread. Our simulations include the transaction cost associated with bid-ask spread. In simulation

we use the realized bid-ask spread; for the Markowitz problems we use a simple forecast of spread,

the average realized bid-ask spread over the previous five trading days.

Shorting and leverage costs. We use the e↵ective federal funds rate as a proxy for interest on

cash for both borrowing and lending. When shorting an asset we add a 5% annualized spread over

the e↵ective federal funds rate to approximate the shorting cost in our simulation. For forecasting,

we set short to 7.5% annualized, and borrow to the e↵ective federal funds rate.

Back-tests. We use a simple back-test to evaluate the performance of the di↵erent methods. We

start with a warm-up period of 500 trading days for our estimators leaving us with 5,686 trading

days, or approximately 22 years of data. The first 1,250 trading days (five years) are used to initialize

the priority parameters. This leaves us with 4,436 out-of-sample trading days, approximately 17

years. Starting with an initial cash allocation of $1,000,000, we call the portfolio construction method

each day to obtain the target weights. We then execute the trades at the closing price, rebalancing

the portfolio to the new target weights, taking into account the weight changes due to the returns

from the previous day. Buy and sell orders are executed at the ask and bid prices, respectively, and

interest is paid on borrowed cash and short stocks, and received on cash holdings.
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Return Volatility Sharpe Turnover Leverage Drawdown
Equal weight 14.1% 20.1% 0.66 1.2 1.0 50.5%
Basic Markowitz 3.7% 14.5% 0.19 1145.2 9.3 78.9%
Weight-limited 20.2% 11.5% 1.69 638.4 5.1 30.0%
Leverage-limited 22.9% 11.9% 1.86 383.6 1.6 14.9%
Turnover-limited 19.0% 11.8% 1.54 26.1 6.5 25.0%
Robust 15.7% 9.0% 1.64 458.8 3.2 24.7%
Markowitz++ 38.6% 8.7% 4.32 28.0 1.8 7.0%
Tuned Markowitz++ 41.8% 8.8% 4.65 38.6 1.6 6.4%

Table 3.1: Back-test results for di↵erent trading policies.

3.5.2 Taming Markowitz

In this first experiment we show how a basic Markowitz portfolio construction method can lead to

the undesirable behavior that would prompt the alleged deficiencies described in §3.1.2. We then

show how adding just one more reasonable constraint or objective term improves the performance,

taming the basic Markowitz method.

Basic Markowitz. We start by solving the basic Markowitz problem (3.1) for each day in the

data set, with the risk target set to 10% annualized volatility. Unsurprisingly the basic Markowitz

problem results in poor performance, as seen in the second line of table 3.1. It has low mean return,

high volatility (well above the target 10%), a low Sharpe ratio, high leverage and turnover, and a

maximum drawdown of almost 80%. This basic Markowitz portfolio performs considerably worse

than an equal-weighted portfolio, which we give as a baseline on the top line of table 3.1.

Markowitz with regularization. In a series of four experiments we show how adding just one

more reasonable constraint or objective term to the basic Markowitz method can greatly improve the

performance.

In the first experiment we add portfolio weight limits of 10% for long positions and -5% for short

positions. We limit the cash weight to lie between �5% and 100% (which guarantees feasibility).

Adding these asset and cash weight limits leads to a significant improvement in the performance

of the portfolio shown in the third row of table 3.1, with the Sharpe ratio increasing to 1.69 (from

0.19), and the maximum drawdown decreasing to 30%. In addition the realized volatility, 11.5%, is

closer to the target value 10% than the basic Markowitz trading policy. The turnover is still very

high, however, and the maximum leverage is still large at above 5.

In the second experiment we add a leverage limit to the basic Markowitz problem, with Ltar = 1.6.

This one additional constraint also greatly improves performance, as seen in the fourth row of

table 3.1, but with a lower turnover and (not surprisingly) a lower maximum leverage, which is at

our target value 1.6.
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Our third experiment adds a turnover limit of T tar = 25 to the basic Markowitz problem. This

additional constraint drops the turnover considerably, to a value near the target, but still achieves

high return, Sharpe ratio, and even lower maximum drawdown.

Our fourth experiment adds robustness to the return and risk forecasts. As simple choices we set

all entries of ⇢ to the 20th percentile of the absolute value of the return forecast at each time step,

and use % = 0.02. This robustification also improves performance. Not surprisingly the realized risk

comes in under our target, since we use the robust risk ex-ante; we could achieve realized risk closer

to our desired target 10% by increasing the target to something like 11.5% (which we didn’t do).

3.5.3 Markowitz++

In the four experiments described above, we see that adding just one reasonable additional constraint

or objective term to the basic Markowitz problem greatly improves the performance. In our last

experiment, we include all of these constraints and terms, with parameters

�hold = 1, �trade = 1, �tar = 0.10

cmin = �0.05, cmax = 1.00, wmin = �0.05, wmax = 0.10, Ltar = 1.6

zmin = �0.10, zmax = 0.10, T tar = 25.

The mean uncertainty parameter ⇢ is chosen as the 20th percentile of the absolute value of the return

forecast, and % = 0.02. We soften the risk target, leverage limit, and turnover limit, using the priority

parameters

�risk = 5⇥ 10�2, �lev = 5⇥ 10�4, �turn = 2.5⇥ 10�3.

These were chosen as the 70th percentiles for the corresponding Lagrange multipliers of the hard

constraints in the basic Markowitz problem for the risk and turnover limits, and as 25% of the

maximum Lagrange multiplier for the leverage limit, over the five years leading up to the out-of-sample

study. (We selected �lev this way since the corresponding constraint was active very rarely in the

basic Markowitz problem.)

With this Markowitz++ method, we obtain the performance listed in the second from bottom row

of table 3.1. It is considerably better than the performance achieved by adding just one additional

constraint, as in the four previous experiments, and very much better than the basic Markowitz

method. Not surprisingly it achieves good performance on all metrics, with a high Sharpe ratio,

reasonable tracking of our volatility target, modest turnover and leverage, and very small maximum

drawdown. When the parameters are tuned annually, as detailed in the next section, we see even

more improvement, as shown in the bottom row of table 3.1.

The Sharpe ratios on the bottom two rows are high. We remind the reader that our data has

survivorship bias and uses synthetic (but realistic) mean return forecasts, so the performance should
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not be thought of as implementable. But the di↵erences in performance of the di↵erent trading

methods is significant.

3.5.4 Parameter tuning

In this section we show how parameter tuning can be used to improve the performance of the portfolio

construction method. We will tune the parameters �hold, �trade, �lev, �risk, and �turn, keeping the

other parameters fixed. We start from the values used in Markowitz++.

Experimental setup. We tune the parameters at the start of every year, on the previous two

years of data, and then fix the tuned parameters for the following year. To tune the parameters

we use the simple cyclic tuning method described in §3.4.4. We cycle through the parameters one

by one. Each time a parameter is encountered in the loop, we increase it by 25%; if this yields an

improvement in the performance (defined below), we keep the new value and continue with the next

parameter; if not, we decrease the parameter by 20% and check if this yields an improvement. We

continue this process until a full loop through all parameters does not yield any improvement. By

improvement in performance we mean that all the following are satisfied:

• The in-sample Sharpe ratio increases.

• The in-sample annualized turnover is no more than 50.

• The in-sample maximum leverage is no more than 2.

• The in-sample annualized volatility is no more than 15%.

Results. Tuning the parameters every year yields the performance given in the last row of table 3.1.

We see a modest but significant boost in performance over untuned Markowitz++.

The tuned parameters over time are shown in figure 3.1. We can note several intuitive patterns

in the parameter values. For example, �risk increases during 2008 to account for the high uncertainty

in the market during this period. Similarly, �turn decreases during the same period, likely to allow us

to trade more freely to satisfy the other constraints; interestingly �trade increases during the same

period, likely to push us toward more liquid stocks when trading increases. During the same period

�lev increases to reduce leverage. Similar patterns can be observed in 2020.

Tuning evolution. Here we show an example of the evolution of tuning, showing both in- and

out-of-sample values of Sharpe ratio, turnover, leverage, and volatility. The in-sample period is April

19, 2016 to March 19, 2018, and the out-of-sample period March 20, 2018 to March 4, 2019. These

are shown in figure 3.2. This tuning process converged after 45 back-tests to the parameter values

�risk = 4⇥ 10�2, �hold = 0.64, �trade = 0.64, �lev = 5⇥ 10�4, �turn = 1.6⇥ 10�3.
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(a) �risk (b) �hold

(c) �trade (d) �lev

(e) �turn

Figure 3.1: Tuned parameters over time.
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(a) Sharpe ratio. (b) Turnover.

(c) Leverage. (d) Volatility.

Figure 3.2: Parameter tuning results.
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We can see that tuning increases the Sharpe ratio both in- and out-of-sample, while keeping the

leverage, turnover, and volatility reasonable. In this example we end up changing 4 of our 5 adjustable

parameters, although not by much, which shows that our initial default parameter values were already

quite good. Still, we obtain a significant boost in performance.

3.5.5 Annual performance

The performance analyses described above and summarized in table 3.1 give aggregate metrics over

a 17 year out-of-sample period, long enough to include multiple distinct market regimes as a well

as a few market crashes. For such a long back-test, it is interesting to see how the performance in

individual years varies with di↵erent market regimes. The realized annual return, volatility, and

Sharpe ratio are shown in figure 3.3, for basic Markowitz, equal weights, and tuned Markowitz++.

Here we see that Markowitz++ not only gives the performance improvements seen in table 3.1, but

in addition has less variability in performance across di↵erent market regimes.
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(a) Yearly annualized returns.

(b) Yearly annualized volatilities.

(c) Yearly annualized mean Sharpe ratios.

Figure 3.3: Yearly annualized metrics for the equal weight portfolio, basic Markowitz, and tuned
Markowitz++.



CHAPTER 3. MARKOWITZ PORTFOLIO CONSTRUCTION AT SEVENTY 102

Figure 3.4: Timing results for the Markowitz problem with a single backtest setting.

3.5.6 Scaling

We now turn from the performance of the portfolios to the algorithmic performance of the portfolio

construction method itself.

Small problems. We start with the small problem used in the previous section, with n = 74 assets,

and without a factor risk model. Figure 3.4 shows the time required for each of the 4,436 days in the

back-test, broken down into updating and logging (shown in green), CVXPY overhead (shown in

blue, negligible), and solver time, the time required to solve the resulting cone program. (We do not

count factorizing the covariance matrix, or computing the mean forecasts, since these are done ahead

of time, and the time is amortized across all back-tests.)

The 17 year back-test, which involve solving 4,436 problems, takes around 104 seconds on a

MacBook Pro with an M1 Pro processor, or about 23ms per day on average. About 63% of the time

is spent in the solver, which in this case is MOSEK [9], with other solvers giving similar results,

including open-source solvers such as ECOS [85], Clarabel [124], and SCS [243]. Only 3% of the time

is spent in the compilation step using CVXPY. The averages for each component of the timings are

indicated by the horizontal lines in the figure.

For a small problem like this one, we can carry out a one-year back-test (around 250 trading

days) in around six seconds, on a single thread. A single processor with 32 threads can carry out
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Assets n Factors k Solve time (s)
100 10 0.01
500 20 0.07
500 50 0.10

2,000 50 0.23
2,000 100 0.22
10,000 50 0.65
10,000 100 0.89
50,000 200 9.00
50,000 500 17.77

Table 3.2: Average solve times for Markowitz++ problem for MOSEK, for di↵erent problem sizes.

around 20,000 one-year back-tests in an hour. There is little excuse for a PM who does not carry out

many back-tests, even if only to vary the parameters around their chosen values.

Large problems. We now investigate the scaling of the method with problem size. As outlined

in §3.3.3, a factor model improves the scaling from O(n3) to O(nk2). To illustrate this, we solve

the Markowitz problem for di↵erent values of n and k using randomly generated but realistic data.

Table 3.2 shows the average solve time for each problem size across 30 instances using MOSEK.

(Solve times with open-source solvers such as Clarabel were a bit longer.) We can see that even very

large problems can be solved with stunning speed.

We solved many more problems than those shown in table 3.2, and used the solve times to

fit a log-log model, approximating the solve time as anbkc, with parameters a, b, c. We obtained

coe�cients b = 0.79 and c = 1.72, consistent with the theoretical scaling of O(nk2).

When the problems are even larger, generic software reaches its limits. In such cases, users

may consider switching to first-order methods like the Alternating Direction Method of Multipliers

(ADMM) [232, 108, 109, 248, 47], which can o↵er better scalability and e�ciency for very large

problems.
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3.6 Conclusions

It was Markowitz’s great insight to formulate the choice of an investment portfolio as an optimization

problem that trades o↵ multiple objectives, originally just expected return and risk, taken to be the

standard deviation of the portfolio return. His original proposal yielded an optimization problem

with an analytical solution for the long-short case, and a QP for the long-only case, both of which

were tractable to solve (for very small problems) even in the 1950s. Since then, stunning advances in

computer power, together with advances in optimization, now allow us to formulate and solve much

more complex optimization problems, that directly handle various practical constraints and mitigate

the e↵ects of forecasting errors. We can solve these problems fast enough that very large numbers of

back-tests can be carried out, to give us a good idea of the performance we can expect, and to help

choose good values of the parameters. It is hardly surprising that these methods are widely used in

quantitative trading today.

While we have vastly more powerful computers, far better software, and easier access to data,

than Markowitz did in 1952, we feel that the more complex Markowitz++ optimization problem

simply realizes his original idea of an optimization-based portfolio construction method that takes

multiple objectives into account.



Chapter 4

Finding moving-band stat-arbs via

convex-concave optimization

4.1 Introduction

We consider the problem of finding a statistical arbitrage (stat-arb), i.e., a portfolio with mean-

reverting price. Roughly speaking, this means that the price of the portfolio stays in a band, and

varies over it. Such a stat-arb is traded in the obvious way, buying when the price is in the low

part of the band and selling when it is in the high part of the band. In financial markets, price

movements are often perceived as largely unpredictable. However, quantitative strategies, such as

stat-arb trading, challenge this view by exploiting subtle and often transient relationships between

asset prices. Traditional stat-arbs focus on portfolios consisting of two or possibly three underlying

assets. When the portfolio contains two assets, trading the stat-arb is called pairs trading. The

assets in a pair are called co-moving assets. Pairs trading involves identifying pairs of assets that

have historically exhibited co-integrated price movements. When the prices of these assets deviate

from their typical relation, traders can position themselves to profit from the expectation that the

prices will revert to their historical relationship. This underlying principle of mean reversion assumes

that asset prices will fluctuate within a defined range over time, eventually returning to equilibrium

after periods of divergence. Pairs trading and similar strategies provide market participants with a

systematic and data-driven approach to profiting from ine�ciencies, thereby playing a crucial role

in contemporary quantitative trading frameworks. Pairs can be found by exhaustive search over

all n(n� 1)/2 pairs of assets in a universe of n assets. When the weights of the two assets in pairs

trading are +1 and �1, the portfolio value is the spread (between the two prices).

In this paper we propose a new method for finding stat-arbs that can contain multiple (more

than two) assets, with general weights. The problem is formulated as a nonconvex optimization

105
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problem in which we maximize the portfolio price variation subject to the price staying within a

fixed band, along with a leverage limit, over some training period. Although this approach requires

maximizing a convex function, we show how to approximately solve it using the convex-concave

procedure [282, 194].

Our second contribution is to introduce the concept of a moving-band stat-arb. In this approach,

the price of the portfolio varies in a band that changes over time, centered at the recent average

portfolio price. (We refer to a traditional stat-arb as a fixed-band stat-arb.) We show that the same

method we use to find fixed-band stat-arbs can be used to find moving-band stat-arbs, despite the

apparent complexity of the average price also depending on the portfolio. Moving-band stat-arbs

are traded in the same obvious way as fix-band stat-arbs, buying when the price is in the low part

of the band and selling when it is in the high part of the band; but with moving-band stat-arbs,

the center of the band changes over time. Moving-band stat-arb trading resembles trading using

Bollinger bands [41, 40], except that the bands are associated with the price of a carefully constructed

portfolio, and not a single asset. Our empirical studies show that moving-band stat-arbs out-perform

fixed-band stat-arbs in terms of profit, and remain profitable for longer out-of-sample periods.

4.1.1 Related work

Stat-arbs. Stat-arb trading strategies date back to the 1980s when a group of Morgan Stanley

traders, led by Nunzio Tartaglia, developed pairs trading [259, 114]. This strategy involves identifying

pairs of assets whose price tends to move together, hence referred to as pairs trading. In pairs

trading, the spread, i.e., price di↵erence between two assets, is tracked and positions entered when

this di↵erence deviates from its mean. This trading strategy has enjoyed widespread popularity,

with its success substantiated by numerous empirical studies in various markets like equities [12],

commodities [237, 298], and currencies [107]; see, e.g., [114, 12, 256, 145, 178, 62, 152, 87].

In the general setting, a stat-arb consists of multiple assets in a portfolio that exhibits a mean-

reverting behavior [106, §10.5]. Stat-arb trading is a widely used strategy in quantitative finance.

The literature on stat-arbs is extensive and generally splits into several categories: finding stat-arbs,

modeling the (mean-reverting) portfolio price, and trading stat-arbs. We give a brief review of these

here and refer the reader to [177] for a comprehensive overview of the literature.

Finding stat-arbs. Probably the simplest approach to finding pairs of co-moving securities is

the distance approach. The distance pairs trading strategy finds assets whose (normalized) prices

have moved closely historically, in an exhaustive search through pairs of assets [114]. Assets whose

prices have a low sum of squared deviation from each other are considered for trading. The distance

approach is simple and intuitive, although it does not necessarily find good pairs [177]. The objective

itself is to minimize the distance between two asset prices, which does not directly relate to the desired

properties of a stat-arb, which crucially should also have a high variance. This paper addresses this
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issue by directly optimizing for large fluctuations around the mean.

The co-integration approach is another popular method for finding co-moving securities. Co-

integration is an important concept in the econometrics literature [162, 5], and dates back to Engle

and Granger’s works in the 1980s (for which Granger was awarded the 2003 Nobel Memorial Prize

in Economic Sciences) [127, 95]. The idea is that the absence of stationarity in a multivariate time

series may be explained by common trends, which would make it possible to find linear combinations

of assets that are stationary and hence mean-reverting. Thus, the co-integration approach is based

on identifying linear combinations of assets that result in a stationary time series [177]. In [302],

the most cited work on co-integration based pairs trading, potential asset pairs are found based

on statistical measures, which are then tested for co-integration using an adapted version of the

Engle-Granger test. Several co-integration based methods have been proposed to extend the pairs

trading strategy to more than two assets. For example, in [316, 318, 317] the authors consider a

(non-convex) optimization problem for finding high variance, mean-reverting portfolios. Their strategy

is based on finding a portfolio of spreads, defined by a co-integration subspace, and implemented using

sequential convex optimization. Their proposed optimization problem, i.e., maximizing variance

subject to a mean-reversion criterion is similar to our problem formulation. However, our problem

di↵ers significantly in that we do not rely on any co-integration analysis or statistical testing. Rather,

we directly optimize for a high variance portfolio that is mean-reverting.

Asset pairs can also be found using machine learning methods. In [272], the authors use

unsupervised learning and propose a density-based clustering algorithms to cluster assets. Then,

within asset clusters, pairs of assets are chosen for trading depending on co-integration, as well as

mean-reversion tendency and frequency. Modern machine learning methods are also explored in [178],

where the authors propose the use of deep neural networks, gradient-boosted trees, and random

forests for finding stat-arb portfolios. Another recent study of deep-learning stat-arb finding is [134].

Earlier work on using machine learning for finding stat-arbs includes, e.g., [84, 234, 289, 151, 150].

Modeling the stat-arb spread. When a co-moving set of assets has been identified, the next step

is to model the portfolio price (or spread between the assets for a pair). Perhaps the most popular

approach is to model the spread using stochastic control theory. It is common to consider investments

in a mean-reverting spread and a risk-free asset and to model the spread as an Ornstein-Uhlenbeck

process [235, 169]. Other methods include those borrowing tools from time series analysis [177].

In [89] the authors propose a mean-reverting Gaussian Markov chain model for modeling the spread

between two assets. Copulas have also been proposed to model the joint distribution of the spread,

both for pairs and for larger sets of assets [75, 287, 179]. In [75] the authors suggest modeling the

spread using linear state space models.

Trading stat-arbs. We mention here a number of stat-arb trading methods, ranging from simple

ones based on the intuitive idea of buying when the price is low and selling when it is high, to more
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complex ones based on learning the price statistics and using stochastic control. One simple method

is based on hysteresis, as used in a conventional thermostat. In this approach we buy (enter into a

long position) when the price drops below a threshold, and sell (switch to a short position) when the

price goes above another threshold. The thresholds are typically based on price bands, as discussed

below. A variation on this method sets the thresholds based on the standard deviation of the price,

as proposed in [114]. Another simple method is linear trading, where we take a position proportional

to the di↵erence between the band midpoint price and the current price. This method can also be

modified to use volatility-based bands instead of fixed bands. (Such a trading policy is a simple

Markowitz policy, with the mean return given by the di↵erence between the midpoint price and the

current price.)

Other methods for trading stat-arbs follow directly from the spread models described above.

When the spread is modeled as an Ornstein-Uhlenbeck process, the optimal trading strategy is

found by solving a stochastic control problem [235, 169, 27]. In [310, 262, 312] the authors model

the spread as an autoregressive process, a discretization of the Ornstein-Uhlenbeck process, and

show how to trade a portfolio of spreads under proportional transaction costs and gross exposure

constraints using model predictive control. With the copula approaches of [75, 287, 179], the

trading strategy is based on deviations from confidence intervals. The machine learning methods

of [272, 178, 134, 84, 234, 289, 151, 150] also include trading strategies.

Exiting a stat-arb. A stat-arb will not keep its mean-reverting behavior forever. Hence, a strategy

for exiting a stat-arb, i.e., closing the position, is needed. One approach is to exit when the spread

reaches a certain threshold in terms of its standard deviation or in terms of a price band, as described

below. Another simple method is to exit after a fixed time-period, as was done in [114].

A simple variation on any of these exit methods does not exit the position immediately when

the exit condition is first satisfied. Instead it reduces the position to zero slowly (e.g., linearly) over

some fixed number of periods.

Price-bands. Price-bands are popular in technical analysis, and are used to identify trading

opportunities based on the price of an asset relative to its recent price history [188]. The most

popular is the Bollinger band [40]. It is constructed by computing the M -day moving average (with

common choice M = 21) of the asset price, denoted µt at time t, and the corresponding price standard

deviation �t. The Bollinger band is then defined as the interval [µt � k�t, µt + k�t], where k > 0 is a

parameter, typically taken to be k = 2. A price signal is extracted based on if the price is near the

top or bottom of the band. For a detailed description of the Bollinger band and other trading-bands,

we refer the reader to [41, 40].
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4.1.2 This paper

This paper proposes a new method for finding stat-arbs, with two main contributions. The first

contribution of our method is to formulate the search for stat-arbs as an optimization problem that

intuitively and directly relates to the desired properties of a stat-arb: its price should remain in a

band (i.e., be mean-reverting) and also should have a high variance. Since our method is based on

convex optimization, it readily scales to large universes of assets. It can and does find stat-arbs with

ten or more assets, well beyond our ability to carry out an exhaustive search.

Our second contribution is to introduce the concept of a moving-band stat-arb. While the idea of

a price band is widely known and used in technical analysis trading, the main di↵erence is that we

apply it to carefully constructed portfolios (i.e., stat-arbs), instead of single assets.

Our focus is on finding both fixed-band and moving-band stat-arbs, and not on trading them.

Our numerical experiments use a simple linear trading policy, and a simple time-based exit condition.

(We have also verified that similar results are obtained using hysteris-based trading policies.) We

also do not address the question of how one might trade a portfolio of stat-arbs, the focus of a

forth-coming paper.

4.1.3 Outline

The rest of the paper is organized as follows. In §4.2 we propose a new method for finding traditional

stat-arbs, i.e., with a fixed band. We extend this method to moving bands in §4.3. In §4.4 we present

experiments on real data, and in §4.5 we conclude the paper.

4.2 Finding fixed-band stat-arbs

We consider a vector time series of prices of a universe of n assets, denoted Pt 2 Rn, t = 1, 2, . . . , T ,

denoted in USD per share. (We presume these are adjusted for dividends and splits.) We consider a

portfolio of these assets given by s 2 Rn, denoted in shares, with si < 0 denoting short positions.

The price or net value of the portfolio is the scalar time series pt = sTPt, t = 1, . . . , T . The asset

prices Pt are positive, but the portfolio price pt need not be, since the entries of s can be negative.

For future use, we define the average price of the n assets as the vector P̄ = (1/T )
P

T

t=1 Pt.

We seek a portfolio for which pt consistently varies over a band (interval of prices) with two

goals. It should stay in the price band, and also, vary over the band consistently; that is, it should

frequently vary between the high end of the band and the low end of the band. We refer to such

a portfolio s as a stat-arb, so we use the term to refer to the general concept as well as a specific

portfolio. Our method di↵ers from the traditional statistical framework, where one would seek a

portfolio s for which pt is co-integrated.
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4.2.1 Formulation as convex-concave problem

We formulate the search for a stat-arb s as an optimization problem. The condition that pt varies

over a band is formulated as �1  pt � µ  1, where µ is the midpoint of the band. Here we fix the

width of the price band as 2; s and µ can always be scaled so this holds. We express the desire that

pt vary frequently over the band by maximizing its volatility. Since s, p, and µ can all be multiplied

by �1 without any e↵ect on the constraints or objective, we can assume that µ � 0 without loss of

generality.

We arrive at the problem

maximize
P

T

t=2(pt � pt�1)2

subject to �1  pt � µ  1, pt = sTPt, t = 1, . . . , T

|s|T P̄  L, µ � 0,

(4.1)

with variables s 2 Rn, p 2 RT , and µ 2 R, where the absolute value in the last constraint is

elementwise. The problem data are the vector price time series Pt, t = 1, . . . , T , and the positive

parameter L.

Note that |s|T P̄ is the average total position of the portfolio, sometimes called its leverage, so

the constraint |s|T P̄  L is a leverage constraint; it limits the total position of the portfolio. The

leverage is a weighted `1 norm of s, and so tends to lead to sparse s, i.e., a portfolio that concentrates

in a few assets, a typical desired quality of a stat-arb. The problem (4.1) is a nonconvex optimization

problem, since the objective is a convex function, and we wish to maximize it; we will explain below

how we can approximately solve it.

4.2.2 Interpretation via a simple trading policy

While our formulation of the stat-arb optimization problem (4.1) makes sense on its own, we can

further motivate it by looking at the profit obtained using a simple trading policy. Suppose we

hold quantity qt 2 R of the portfolio, i.e., we hold the portfolio qts 2 Rn (in shares). We assume

that q0 = qT = 0, i.e., we start and end with no holdings. In period t we buy qt � qt�1 and pay

pt(qt � qt�1). The total profit is then

T�1X

t=1

qt(pt+1 � pt). (4.2)

We will relate this to our objective in (4.1) above, with the simple trading policy

qt = µ� pt, t = 1, . . . , T � 1, (4.3)

which we refer to as a linear trading policy since the holdings are a linear function of the di↵erence
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between the band midpoint and the current price. This trading policy holds nothing when pt = µ,

i.e., the price is in the middle of the band. When the price is low, pt = µ� 1, we hold qt = +1, and

when it is high, pt = µ+ 1 we hold qt = �1.

With the simple linear policy (4.3) and the boundary conditions q0 = qT = 0, the profit (4.2) is,

after some algebra,

1

2

TX

t=2

(pt � pt�1)
2 +

(p1 � µ)2 � (pT � µ)2

2
.

The first term is one half our objective. The second term is between �1/2 and 1/2, since (pT � µ)2

and (p1 � µ)2 are both between 0 and 1. Thus the profit is at least

1

2

 
TX

t=2

(pt � pt�1)
2 � 1

!
. (4.4)

This shows that our objective is the profit of the simple linear policy (4.3), scaled by one-half, plus a

constant. In particular, if the objective of the problem (4.1) exceeds one, the simple linear policy

makes a profit.

4.2.3 Solution method

Convex-concave procedure. We solve the problem (4.1) approximately using sequential convex

programming, specifically the convex-concave procedure [282, 194]. Let k denote the iteration, with

sk the portfolio and pk
t
the portfolio price in the kth iteration. In each iteration of the convex-concave

procedure, we linearize the objective, replacing the quadratic function f(p) =
P

T

t=2(pt � pt�1)2 with

the a�ne approximation

f̂(p; pk) = f(pk) +rf(pk)T (p� pk) = rf(pk)T p+ c,

where c is a constant (i.e., does not depend on p). This linearization is a lower bound on the true

objective, i.e., we have f(p) � f̂(p; pk) for all p. For completeness we note that

(rf(p))t =

8
>>><

>>>:

2(p1 � p2) t = 1

2(2pt � pt�1 � pt+1) t = 2, . . . , T � 1

2(pT � pT�1) t = T.

We now solve the linearized problem

maximize f̂(p; pk)

subject to �1  pt � µ  1, pt = sTPt, t = 1, . . . , T

|s|T P̄  L, µ � 0,

(4.5)
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with variables pt, s and µ. This is a convex problem, in fact a linear program (LP), and readily

solved [50]. We take the solution of this problem as the next iterate pk+1, sk+1, µk+1. This simple

algorithm converges to a local solution of (4.1), typically in at most a few tens of iterations.

Cleanup phase. The leverage constraint |s|T P̄  L encourages sparse solutions, but in some cases

the convex-concave procedure converges to a portfolio with a few small holdings. To achieve even

sparser portfolios, we can carry out a clean-up step once the convex-concave procedure has converged.

We first determine the subset of assets for which si is zero or small, as measured by its relative weight

in the portfolio, i.e., i for which

|si|P̄i  ⌘|s|T P̄ ,

where ⌘ is a small positive constant such as 0.05. We then solve the problem again, this time with

the constraint that all such si are zero. This takes just a few convex-concave iterations, and can be

repeated, which results in sparse portfolios in which every asset has weight at least ⌘.

Implementation. To make the optimization problem better conditioned, we scale the prices Pt so

that (after scaling) P̄ = 1, the vector with all entries one. Thus after scaling, the leverage |s|T P̄
becomes the `1 norm of s. We also scale the gradient (or objective) to be on the order of magnitude

one. These scalings do not a↵ect the solution, but make the method less vulnerable to floating point

rounding errors.

Initialization. The final portfolio found by the convex-concave procedure, plus the cleanup phase,

depends on the initial portfolio s1. It can and does converge to di↵erent final portfolios for di↵erent

starting portfolios. With a random initialization we can find multiple stat-arbs for the same universe.

(We also get some duplicates when the method converges to the same final portfolio from di↵erent

initial portfolios.) We have found that uniform initialization of the entries of s1 in the interval [0, 1]

works well in practice. Thus, from one universe and data set, we can obtain multiple stat-arbs.

4.3 Finding moving-band stat-arbs

4.3.1 Moving-band stat-arbs

In the fixed-band stat-arb problem (4.1) µ is constant, so the midpoint of the trading band does not

vary with time. In this section we describe a simple but powerful extension in which the stat-arb

band midpoint changes over time. One simple (and traditional) choice is to define µt as the mean of

the trailing prices pt, for example the mean over the last M periods,

µt =
1

M

tX

⌧=t�M+1

p⌧ .
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(This requires knowledge of the prices P0, P�1, . . . , P�M+1.) In this formulation, µt is also a function

of s, the portfolio, but it is a known linear function of it. Any other linear expression for the average

recent price could be used, e.g., exponentially weighted moving average (EWMA). A moving-band

stat-arb is a portfolio s in which the price pt stays in a moving band with width two and midpoint

µt, and also has high variance.

Trading policy. The simple linear trading policy (4.3) can be modified in the obvious way, as

qt = µt � pt, t = 1, . . . , T � 1. (4.6)

4.3.2 Finding moving-band stat-arbs

We arrive at the optimization problem

maximize
P

T

t=2(pt � pt�1)2

subject to �1  pt � µt  1, pt = sTPt, t = 1, . . . , T

|s|T P̄  L, µt = (1/M)
P

t

⌧=t�M+1 p⌧ , t = 1, . . . , T,

(4.7)

with variables s 2 Rn, p1, . . . , pT , and µ1, . . . , µT . (The latter two sets of variables are simple linear

functions of s.) In this problem we have an additional parameter M , the memory for the band

midpoint.

Note that in the fixed-band stat-arb problem (4.1), µ is a scalar variable that we freely choose; in

the moving-band stat-arb problem (4.7), µt varies over time, and is itself a function of s. Despite

this complication, the moving-band stat-arb problem (4.7) can be approximately solved using exactly

the same convex-concave method as the fixed-band stat-arb problem (4.1); the only di↵erence is in

the convex constraints.

4.4 Numerical experiments

We illustrate our method with an empirical study on historical asset prices. Everything needed to

reproduce the results is available online at

https://github.com/cvxgrp/cvxstatarb.

4.4.1 Experimental setup

Data set. We use daily data of the CRSP US Stock Databases from the Wharton Research Data

Services (WRDS) portal [308]. The data set consists of adjusted prices of 15405 assets from January

4th, 2010, to December 30th, 2023, for a total of 3282 trading days.

https://github.com/cvxgrp/cvxstatarb
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Monthly search for stat-arbs. Starting December 23, 2011, and every 21 trading days thereafter,

until July 6th, 2022, we use the convex-concave method with 10 di↵erent random initial portfolios.

From these 10 stat-arbs we add the unique ones, defined by the set of assets in the stat-arb, to our

current set of stat-arbs. All together we solve fixed-band and moving-band problems 1270 times.

Parameters. We set L = $50 for the fixed-band stat-arb and L = $100 for the moving-band

stat-arb. For the moving-band stat-arb, we take M = 21 days, i.e., we use the trailing month average

price as the midpoint, a value commonly used for Bollinger bands [40, 41]. We note that our results

are not very sensitive to the choices of L and M , and that choosing a larger L for the moving-band

than for the fixed-band stat-arb is reasonable since we expect the price of a portfolio to vary less

around its short-term moving midpoint than around a fixed midpoint.

Trading policy. We use the simple linear trading policies defined in (4.3) and (4.6) for the fixed-

band and moving-band stat-arbs, respectively. We use a simple time-based exit condition, where we

trade a stat-arb for Tmax trading days, and then exit the position uniformly (linearly) over the next

T exit trading days. This means we take

qt = (1� ↵t)(µ� pt), t = Tmax, . . . , Tmax + T exit � 1,

where ↵t = (t+ 1� Tmax)/T exit. We use parameter values Tmax = 63 for the fixed-band stat-arb

and Tmax = 125 for the moving-band stat-arb, and T exit = 21 for both. We also exit a stat-arb if the

value of the stat-arb plus a cash account drops below a given level, as described below.

4.4.2 Simulation and metrics

We simulate and evaluate a stat-arb as follows.

Cash account. Each stat-arb is initialized with a cash account value

C0 = ⌫|s|TP0,

where ⌫ is a positive parameter and P0 is the price vector the day before we start trading the stat-arb.

We take ⌫ = 0.5 in our experiments. The cash account is updated as

Ct+1 = Ct � (qt+1 � qt)pt+1 � �t, t = 1, . . . , T,

where �t is the transaction and holding cost, consisting of the trading cost at time t + 1 and the

holding cost over period t, described below. The cash account plus the long position is meant to be

the collateral for the short positions.
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Portfolio net asset value. The net asset value (NAV) of the portfolio, including the cash account,

at time t is then

Vt = Ct + qtpt.

(Note that V0 = C0.) The profit at time t is

Vt � Vt�1 = qtpt + Ct � qt�1pt�1 � Ct�1 = qt(pt � pt�1)� �t,

which agrees with the profit formula (4.2), after accounting for transaction and holding costs.

NAV based termination. If the NAV goes below 25% of C0, we liquidate the stat-arb portfolio.

We do this for two reasons. First, we do not want the portfolio to have negative value, i.e., to go

bust. Second, this constraint ensures that the short positions are always fully collateralized by the

long positions plus the cash account, with a margin of at least half of our initial investment. All of

our metrics include early termination stat-arbs.

Trading and shorting costs. Our numerical experiments take into account transaction costs, i.e.,

we buy assets at the ask price, which is the (midpoint) price plus one-half the bid-ask spread, and we

sell assets at the bid price, which is the price minus one-half the bid-ask spread. Note that while

we do not take into account transaction cost in our simple trading policy, we do in simulation and

accounting. We use 0.5% as a proxy for the annual shorting cost of assets, which is well above what

is typically observed in practice for liquid assets [73, 117, 173, 86]. (We also note that the method is

robust against shorting costs; the results are consistent even when shorting costs exceed 10% per

annum.)

Metrics. The profit of a stat-arb is

TX

t=1

(Vt � Vt�1),

where T = Tmax + T exit is the number of trading days in the evaluation period. The return at time t

is

rt =
Vt � Vt�1

Vt�1
, t = 1, . . . , T.

We report several standard metrics based on the daily returns rt. The average return is

r =
1

T

TX

t=1

rt,
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Figure 4.1: Distribution of the number of assets per fixed-band stat-arb.

which we multiply by 250 to annualize. The risk (return volatility) is

 
1

T

TX

t=1

(rt � r)2
!1/2

,

which we multiply by
p
250 to annualize. The annualized Sharpe ratio is the ratio of the annualized

average return to the annualized risk. Finally, the maximum drawdown is

max
1t1<t2T

✓
1� Vt2

Vt1

◆
,

the maximum drop in value form a previous high.

4.4.3 Results for fixed-band stat-arbs

Stat-arb statistics. After solving the fixed-band stat-arb problem 1270 times, we found 539 unique

stat-arbs. These stat-arbs contained between 2 and 11 assets, with a median value of 6, as shown in

figure 4.1. Over time the number of active stat-arbs ranges up to 30, with a median value of 16, as

shown in figure 4.2. Out of the 539 stat-arbs, 17 (around 3%) were terminated before the end of the

evaluation period, due to the NAV falling below 25% of the initial investment.

Metrics. Table 4.1 summarizes metrics related to the profitability of the fixed-band stat-arbs.

Of the 539 stat-arbs, 68% were profitable. The average annualized return is 2%, with an average

annualized risk of 35%, and an average annualized Sharpe ratio of 0.81. The maximum drawdown
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Figure 4.2: Number of active fixed-band stat-arbs over time.

was on average 17% over the four-month trading period for each stat-arb.
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Profitability
Fraction of profitable stat-arbs 68%

Annualized return
Average 2%
Median 18%
75th percentile 34%
25th percentile -5%

Annualized risk
Average 35%
Median 21%
75th percentile 38%
25th percentile 13%

Annualized Sharpe ratio
Average 0.81
Median 1.01
75th percentile 1.87
25th percentile -0.21

Maximum drawdown
Average 17%
Median 10%
75th percentile 19%
25th percentile 5%

Table 4.1: Metric summary for 539 fixed-band stat-arbs.
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Figure 4.3: A fixed-band stat-arb strategy that made money. Top. Price. Bottom. Cumulative profit.

Example stat-arbs. We show the detailed evolution of two stat-arbs, one that made money and

one that lost money, in figures 4.3 and 4.4, respectively. These were chosen to have average returns

around the 70th and 25th percentiles of the return distribution across our 539 stat-arbs. As expected

both stat-arbs are very profitable in-sample. The first one continues to be profitable out-of-sample.

The first one, which made money, contained the assets

Amgen

Walgreens

Anadarko Petroleum

Yum! Brands

Energy Transfer LP

Alexion Pharmaceuticals.
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Figure 4.4: A fixed-band stat-arb strategy that lost money. Top. Price. Bottom. Cumulative profit.
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The second one, which lost money, contained the assets

Target

Vanguard

Deutsche Bank

The Charles Schwab Corporation

Delta Air Lines

Alexion Pharmaceuticals

The Archer-Daniels-Midland Company
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Figure 4.5: Distribution of the number of assets per moving-band stat-arb.

4.4.4 Results for moving-band stat-arbs

Stat-arb statistics. We found 711 unique moving-band stat-arbs (compared with 539 fixed-band

stat-arbs). These stat-arbs contained between 1 and 11 assets, with a median value of 5. The full

distribution is shown in figure 4.5. The number of active moving-band stat-arbs over time is shown in

figure 4.6. The median number of active stat-arbs is 40. This is considerably larger than the number

of active fixed-band stat-arbs since we find more of them, and they are active (by our choice) almost

twice as long. None out of the 711 moving-band stat-arbs were terminated before the end of the

evaluation period, due to the NAV falling below 25% of the initial investment.

Metrics. Table 4.2 summarizes the profitability of the moving-band stat-arbs. A large majority

(79%) of the stat-arbs are profitable. The average annualized return was 16%, with an average

annualized risk of 20%, and an average annualized Sharpe ratio of 0.84. The maximum drawdown

was on average 12% over the seven-month trading period for each stat-arb.

Comparison with fixed-band stat-arbs. Our first observation is that far fewer of the moving-

band stat-arbs were terminated early due to low NAV than the fixed-band stat-arbs, despite their

running for a period almost twice as long. Comparing tables 4.1 and 4.2 we see that the metrics for

fixed-band stat-arbs are more variable, with a larger range in each of the metrics. The moving-band

stat-arbs are more profitable than the fixed-band stat-arbs, but the di↵erence is not large.

Example stat-arbs. Two stat-arbs, picked to represent roughly the 70th and 15th percentiles of the

return distribution across the 711 stat-arbs, are illustrated in figures 4.7 and 4.8, respectively. Again,
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Figure 4.6: Number of active moving-band stat-arbs over time.

Profitability
Fraction of profitable stat-arbs 79%

Annualized return
Average 16%
Median 12%
75th percentile 24%
25th percentile 3%

Annualized risk
Average 20%
Median 15%
75th percentile 25%
25th percentile 9%

Annualized Sharpe
Average 0.84
Median 0.87
75th percentile 1.51
25th percentile 0.21

Maximum drawdown
Average 12%
Median 9%
75th percentile 15%
25th percentile 5%

Table 4.2: Metric summary for 711 moving-band stat-arbs.
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both stat-arbs are profitable in-sample, and the first one continues to be profitable out-of-sample.

The first one, which made money, contained the assets

Morgan Stanley

Monsanto

Walgreens

Accenture Plc

ArcelorMittal

Pioneer Natural Resources

The second one, which lost money, contained the assets

Lockheed Martin

ServiceNow

Gilead Sciences

NXP Semiconductors
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Figure 4.7: A moving-band stat-arb strategy that made money. Top. Price. Middle. Price relative
to the trailing mean. Bottom. Cumulative profit.
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Figure 4.8: A moving-band stat-arb strategy that lost money. Top. Price. Middle. Price relative to
the trailing mean. Bottom. Cumulative profit.
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4.5 Conclusions and comments

We have formulated the problem of finding stat-arbs as a nonconvex optimization problem which

can be approximately solved using the convex-concave procedure. We have introduced moving-band

stat-arbs, which combine ideas from statistical arbitrage and price band trading.

Our empirical study on historical data shows that moving-band stat-arbs perform better than

fixed-band stat-arbs, and remain profitable for longer out-of-sample periods. Our empirical study

uses very simple trading and exit policies; we imagine that with more sophisticated ones such as

those cited above, the results would be even better. Our focus in this paper is on finding stat-arbs,

and not on trading them.

Variations and extensions. We mention here several ideas that we tried out, but were surprised

to find did not improve the empirical results.

• Asset screening. We construct stat-arbs using assets only within an industry or sector.

• Validation. We split past asset prices into a training and a test set. We find candidate stat-arbs

using the training data and then test them on the test data. We then only trade those with

good test performance.

• Incorporating transaction costs in the trading policy. We modify the linear policy to take into

account transaction costs. (Our simulations take trading cost into account, but our simple

linear trading policy does not.)

• Hysteresis-based trading. We use a hysteresis-based trading policy, which can help reduce

transaction costs compared to the linear policy.

Trading a portfolio of stat-arbs. We have focussed on finding individual stat-arbs. A next

obvious topic is how to trade a portfolio of stat-arbs. This will be addressed in an upcoming paper by

the authors. We simply note here that the results presented in this paper are all for single stat-arbs,

and so fall somewhere in between individual assets and a full portfolio.



Chapter 5

Managing a dynamic basket of

moving-band stat-arbs

5.1 Introduction

We consider the problem of managing a portfolio of statistical arbitrages (stat-arbs), where each

stat-arb is a mean-reverting portfolio of a subset of an n-asset universe. Trading strategies based

on stat-arbs have been around since the 1980s and are popular due to their documented success in

practice. The strategy is based on the idea that if the price of a portfolio of assets is mean-reverting,

we can profit by buying the portfolio when it is cheap and selling it when it is expensive. The

literature on stat-arbs is vast, and typically focuses on one of two aspects: (i) finding a linear

combination of asset prices that is mean-reverting, or (ii) finding a trading policy that profits by

exploiting the mean-reversion. To the best of our knowledge, there exists no satisfying solution to the

problem of managing a portfolio of multiple stat-arbs, that is independent of the process of finding

them. This paper aims to fill this gap and proposes a solution based on a Markowitz optimization

approach. In particular, we focus on the case of moving-band stat-arbs (MBSAs), recently introduced

in [164], where the midpoint of the price band is allowed to move over time.

5.1.1 Related work

Stat-arbs. Stat-arb strategies have been popular ever since their introduction by Nunzio Tartaglia

in the 1980s [259, 114]. The first strategy was based on pairs trading, where the price di↵erence

between two assets is tracked and positions entered when this di↵erence deviates from its mean. Its

success has been demonstrated in numerous empirical studies in various markets like equities [12],

commodities [237, 298], and currencies [107]; see, e.g., [114, 12, 256, 145, 178, 62, 152, 87]. The

128
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general setting of a stat-arb is a portfolio of (possibly more than two) assets that exhibits a mean-

reverting behavior [106, §10.5]. The literature on stat-arbs tends to split into several categories:

finding stat-arbs, modeling the (mean-reverting) portfolio price, and trading stat-arbs. For a detailed

overview of the literature, we refer the reader to [177].

MBSA. MBSAs were recently introduced as an extension of the tradition stat-arb, in which the

midpoint of the price band is allowed to move over time [164]. Although the method is new, it relies

on principles related to Bollinger bands that have been known for decades [40, 41]. The MBSA relies

on solving a small convex optimization problem to find a portfolio of (possibly more than two) assets

that vary within a moving band. The method has been shown to work well in practice, and is used

in the empirical study in this paper.

Trading stat-arbs. With some exceptions, the literature on trading stat-arbs is mostly limited to

pairs trading or trading individual stat-arbs, rather than managing a portfolio of several stat-arbs.

Several methods are based on co-integration [162, 5, 127, 95, 302]. For example, in [316, 318, 317]

the authors consider a (non-convex) optimization problem for finding high variance, mean-reverting

portfolios, in a co-integration space of several stat-arb spreads. Their strategy is based on finding

a portfolio of spreads, defined by a co-integration subspace, and implemented using sequential

convex optimization. In [310, 262, 312] the authors model the spread of a pair of assets as an

autoregressive process, a discretization of the Ornstein-Uhlenbeck process, and show how to trade a

portfolio of spreads under proportional transaction costs and gross exposure constraints using model

predictive control. The authors of [311] use co-integration techniques to find pairs of assets that are

mean-reverting, and show how to construct optimal mean-variance portfolios of these pairs.

Our approach di↵ers from the above methods in that we do not assume any particular model of

the price process, and we do not use statistical analysis like co-integration tests to find stat-arbs.

Instead, we assume several stat-arbs (defined below as a portfolio and a price signal) are given, and

the problem is to find the optimal allocation to these stat-arbs. In other words, we decouple the

problem of finding stat-arbs from the problem of portfolio construction.

5.1.2 Outline

The rest of this paper is structured as follows. In §5.2 we review MBSAs and set our notation. In

§5.3 we show how to manage and evaluate a dynamic basket of MBSAs. We present an empirical

study of the method on recent historical data in §5.4, and give conclusions in §5.5.
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5.2 Moving-band stat-arbs

MBSAs were recently introduced in [164]. We start with a universe of n assets, with Pt 2 Rn

++

denoting the price (suitably adjusted) in USD, in period t = 1, 2, . . ..

5.2.1 Midpoint price and alpha

An MBSA is defined by a vector s 2 Rn of asset holdings (in shares), with negative entries denoting

short positions. The vector s is typically sparse, with only a modest number of nonzero entries, but

that will not a↵ect our method. The MBSA price in period t is pt = sTPt. The MBSA midpoint

price is given by the trailing M -period average price,

µt =
1

M

tX

⌧=t�M+1

p⌧ , (5.1)

where M is the rolling window memory. For a good MBSA, the di↵erence of the price and midpoint

price, pt � µt, will oscillate in a band; we obtain a profit by buying when the price di↵erence is low

and selling when it is high. We associate with the MBSA the ‘alpha’ value

↵t = µt � pt. (5.2)

If ↵t is positive, we expect the price of the MBSA to increase, and if it is negative, we expect the

price to decrease.

5.2.2 MBSA lifetime

In [164] we show how to discover MBSAs (i.e., the vector s) by approximately solving a constrained

variance maximization problem, using the convex-concave procedure [282, 194].

Each MBSA has a lifetime, starting at creation or discovery time t = d and ending at time

t = e > d, when we choose to decommission it. We say it is active over the periods t = d, d+ 1, . . . , e.

(See [164, §2.3] for details.)

5.2.3 Multiple MBSAs

We consider a collection of multiple active MBSAs that changes over time as new ones are discovered

and some existing ones are decommissioned. We denote Kt as the number of MBSAs active during

period t, and index the MBSAs as k = 1, . . . ,Kt. The kth MBSA is defined by the holdings s(k) 2 Rn,

which gives rise to the price p(k)
t

= (s(k))TPt, and alpha

↵(k)
t

= µ(k)
t

� p(k)
t

,



CHAPTER 5. MANAGING A DYNAMIC BASKET OF MOVING-BAND STAT-ARBS 131

where µ(k)
t

is the moving midpoint of the kth MBSA. We collect the holdings of the Kt MBSAs in a

matrix

St = [s(1) · · · s(Kt)] 2 Rn⇥Kt ,

and introduce the Kt-vectors

pt = (p(1)
t

, . . . , p(Kt)
t

), µt = (µ(1)
t

, . . . , µ(Kt)
t

), ↵t = (↵(1)
t

, . . . ,↵(Kt)
t

),

i.e., we extend the notation introduced in the previous paragraph to the setting of multiple MBSAs.

5.3 Managing a dynamic basket of MBSAs

5.3.1 Portfolio holdings and trades

Arb-level and asset-level portfolio holdings. The (MBSA) holdings during period t are denoted

by qt 2 RKt . (The units of qt are ‘shares’ of the MBSAs.) The corresponding asset-level holdings are

ht = Stqt 2 Rn (in shares), or, in USD, Pt � (Stqt), where � denotes the elementwise (Hadamard)

product.

The cash account is denoted by ct 2 R (in USD). Since we will use the cash account as part of

our collateral for short positions, we will assume ct > 0 for all t, i.e., we do not borrow cash. The

total portfolio value at time t is then pT
t
qt + ct in USD.

Trading cost. We denote the (asset level) trades vector at time t as zt = ht�ht�1, i.e., the change

in asset-level holdings from time t� 1 to time t, in shares. The trading cost at time t is given by

(trade
t

)T |zt|,

where trade
t

2 Rn

+ is the vector of one half the bid-ask spread for each asset at time t, in USD per

share, and the absolute value is elementwise.

Holding cost. The holding cost is given by

(short
t

)T (�h)+,

where short
t

2 Rn is the vector of shorting rates for each asset over period t, in USD per share per

trading period. Here (u)+ = max{u, 0} is the nonnegative part of u, and in the expression above it

is applied elementwise.
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5.3.2 Markowitz objective and constraints

We manage a dynamic basket of MBSAs using a Markowitz optimization approach [208, 210, 44],

maximizing the expected return adjusted for transaction and holding costs, subject to constraints on

the portfolio holdings which include a risk limit. We assume that we know the current asset prices

Pt, the arb-to-asset transformation matrix St, and the previous portfolio holdings ht�1 (and qt�1)

and cash value ct�1. Our goal is to find the new portfolio holdings ht (and qt and ct). We denote the

candidate values, which are optimization variables, as h, q, and c, respectively.

Objective. The objective is to maximize the alpha exposure, adjusted for transaction and shorting

costs,

↵T

t
q � �trade(trade

t
)T (h� ht�1)� �short(short

t
)T (�h)+,

where �trade and �short are positive parameters trading o↵ the alpha exposure, transaction cost, and

holding cost. The true values of trade
t

and short
t

are not known at time t, but are estimated from

historical data. This objective is a concave function of the variables h and q.

Cash-neutrality. We assume that the portfolio is cash-neutral [44, 130], i.e.,

pT
t
q = 0. (5.3)

In other words, the total portfolio value is equal to the value of the cash account. (We can also

add a limit on the market exposure (or beta), but we found empirically that this makes a small

di↵erence on top of the cash neutrality constraint.) This constraint is often used in long-short trading

strategies [130, Chap. 15]. The cash neutral constraint is a linear equality constraint on the variable

q.

Collateral constraint. We require that

PT

t
(h)+ + (c)+ � ⌘(PT

t
(h)� + (c)�),

where ⌘ � 1 is a parameter. Here (u)� = (�u)+ = max{�u, 0} is the nonpositive part of u, applied

elementwise to h above. This constraint ensures that the long position is at least ⌘ times the short

position. In the form above, it is not a convex constraint, but subtracting (PT

t
(ht)� + (ct)�) from

both sides yields the equivalent convex constraint

PT

t
h+ c � (⌘ � 1)(PT

t
(h)� + (c)�).
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The cash-neutrality constraint implies PT

t
h = 0, so this simplifies to

c � (⌘ � 1)PT

t
(h)�,

i.e., the cash account is at least (⌘� 1) times the short position. For example, we can set ⌘ = 2.02 to

keep a collateral of 102% of the short position, as has typically been required by regulation [73, 117].

MBSA size limit constraints. We add the constraints

|q|k(pt)k  ⇠(k)
t

c, k = 1, . . . ,Kt,

i.e., the absolute value of the position in the kth MBSA is at most ⇠(k)
t

times the total portfolio

value (which is the same as the cash account), where ⇠(k)
t

is a parameter. These constraints serve

two purposes. First, they act as a form of regularization in case there are more MBSAs than assets,

in which case the covariance matrix in the risk constraint (defined below) will be ill-conditioned

or singular. Second, they limit extreme positions in any single MBSA. During the active period

t = d, d+ 1, . . . , e of an MBSA, we set ⇠(k)
t

= ⇠ for t = d, d+ 1, . . . , e� l, and then linearly decrease

⇠(k)
t

to zero over the next l periods, where l is a parameter, say l = 21 periods, and ⇠ is a parameter

common to all MBSAs. In other words we use the size limit constraints to gradually decommission

MBSAs. These constraints are linear inequality constraints on the variables q and c, and so are

convex.

Risk constraint. The traditional definition of risk of a portfolio is the variance of the portfolio

return, expressed as a quadratic form of the asset weights with an estimated asset return covariance

matrix. Taking the squareroot we obtain the standard deviation of portfolio return, i.e., its volatility,

which we can convert to USD by multiplying by the portfolio value.

Here we propose a di↵erent risk measure, which we have found empirically to work better, and

is more in line with the spirit of MBSAs. Our risk is based on fluctuation of the portfolio value

around its expected midpoint, and is directly expressed in USD. Recall that the portfolio value is

pT
t
qt, which we expect to fluctuate around the midpoint value µT

t
qt, both of these in USD. We take

the risk to be an estimate of the short term mean square value of the di↵erence of the portfolio value

and the midpoint value, (pt � µt)T qt. We express this mean-square value (now using q, not qt) as

qT⌃tq,

where ⌃t is an average of the recent values of (p⌧ � µ⌧ )(p⌧ � µ⌧ )T . We limit our risk using the

constraint

k⌃1/2
t

qk2  �c,
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where � > 0 is a parameter setting the target risk (which is unitless) and c is the portfolio value.

This risk limit is a convex constraint in the variables q and c, specifically a second-order cone (SOC)

constraint [50, §4.4.2].
The covariance matrix ⌃t can be estimated in many ways; see, e.g., [163]. We express it in terms

of asset prices as

⌃t = ST

t
⌃P

t
St,

where ⌃P

t
2 Rn⇥n is an estimate of the short-term covariance matrix of the asset prices. We estimate

⌃P

t
as follows. First, define the centered price vectors

P̃t = Pt � P̄t, t = 1, . . . , T,

where P̄t is the M -period rolling window mean of the asset prices. (This is the same M used to

define the MBSA midpoints in (5.1).) Then, ⌃P

t
is an average of the recent values of P̃⌧ P̃T

⌧
. If a

linear estimator, like a rolling window or exponentially weighted moving average (EWMA), is used

to estimate this expectation, then this is equivalent to estimating ⌃t directly using the same method,

i.e., to center the MBSA prices and then compute an average of the outer product of the centered

prices. We will use the iterated EWMA predictor [163, 18], to estimate the covariance matrix of the

centered prices P̃t. (This is not equivalent to estimating ⌃t directly with an iterated EWMA, but in

practice very similar.)

5.3.3 Markowitz formulation

We assemble the objective and constraints described above. We take ht, qt, and ct, as optimal values

of h, q, and c in the optimization problem

maximize ↵T

t
q � �trade(trade

t
)T (h� ht�1)� �short(short

t
)T (�h)+

subject to h = Stq, c � (⌘ � 1)PT

t
h�, c = ct�1 + pT

t
qt�1,

pT
t
q = 0, |q|k(pt)k  ⇠(k)

t
c, k = 1, . . . ,Kt,

k⌃1/2
t

qk2  �c,

(5.4)

with variables h 2 Rn, q 2 RKt , and c. The problem data are:

• ht�1, qt�1, ct�1, the previous portfolio holdings at the asset-level and arb-level, and cash;

• trade
t

and short
t

, (predictions of) the trading and holding costs;

• St, the arb-to-asset transformation matrix;

• ⌘, the collateral parameter;

• Pt and pt, the asset and MBSA prices;
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• ⇠(k)
t

, the MBSA size limits;

• ⌃t, a prediction of the short-term covariance matrix of the MBSA prices;

• �, a target risk, expressed as a fraction of the portfolio value.

The problem (5.4) is a convex optimization problem, more specifically one that can be transformed

to a second-order cone program (SOCP). The solution to this optimization problem gives the new

MBSA portfolio qt, the asset-level portfolio holdings ht, and the cash account ct at time t.

Extensions and variations. We can add additional constraints, such as a leverage constraint,

asset position limits, maximum market exposure, etc. [44]. We can also soften some constraints, if it

is not critical that they are satisfied exactly and softening improves performance [44]. For example,

to soften the arb-to-asset constraint, we remove the constraint h = Stq and add a penalty term

�holdkPt � (h� Stq)k1 to the objective. (Note that softening the arb-to-asset constraint implicitly

also softens the risk and cash-neutrality constraints if these are expressed in terms of the arb-level

portfolio q.) Softening some constraints allows the optimizer to choose values that violate the original

hard constraints when necessary, which can reduce unnecessary trading, and therefore transaction

cost.

5.4 Numerical experiments

We illustrate the MBSA portfolio management strategy on recent historical data. Code to replicate

the experiments is available at

https://github.com/cvxgrp/cvxstatarb.

5.4.1 Data and parameters

Data set. We gather daily price data from the CRSP US Stock Databases using the Wharton

Research Data Services (WRDS) portal [308]. The data set consists of adjusted asset prices of 15405

stocks from January 4, 2010, to December 30, 2023, for a total of 3282 trading days.

Monthly search for MBSAs. We search for MBSAs every 21 trading days, with the same setup

and parameters as described in detail in [164, §4.1].

Dynamic management of the MBSAs. Every day we solve the Markowitz optimization

problem (5.4) to rebalance our portfolio. Each MBSA is kept in the portfolio for 500 trading days.

After that ⇠ is reduced linearly to zero over the next 21 trading days.

https://github.com/cvxgrp/cvxstatarb
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Risk model. As described in §5.3.2, we decompose the covariance matrix as

⌃t = ST

t
⌃P

t
St,

where ⌃P

t
is the short-term covariance matrix of the asset prices. The covariance matrix ⌃P

t
is

estimated using the iterated EWMA (IEWMA) predictor (see [92] and [163, Ch. 2.5]) on the centered

prices P̃t = Pt � P̄t, where P̄t is the 21-day rolling window mean of the asset prices. For the IEWMA

predictor, we use a 125-day half-life for volatility estimation, and a 250-day half-life for correlation

estimation. To reduce trading induced by the risk-model, we smooth the covariances with a 250-day

half-life EWMA [163, Chap. 9.2].

Parameters. For the MBSA problem we use the same parameters as in [164, §4.1]. For the

Markowitz optimization problem we use �trade = 1, ⌘ = 1, ⇠ = 1, and �tar = 10% annualized.

Trading and shorting costs. Our numerical experiments take into account transaction costs,

i.e., we buy assets at the ask price, which is the (midpoint) price plus one-half the bid-ask spread,

and we sell assets at the bid price, which is the price minus one-half the bid-ask spread. We use

0.5% as a proxy for the annual shorting cost of stocks, which is well above what is typically observed

in practice for liquid stocks [73, 117, 173, 86]. We also note that we have tested the method with

shorting costs upwards of 10% annually, and it remains profitable.

5.4.2 Simulation and metrics

This section explains how we simulate the portfolio, and the metrics we use to evaluate the perfor-

mance.

Cash account. We initialize the portfolio with a cash account at time t = 0, c0 = 1. The cash

account evolves as

ct+1 = ct � (qt+1 � qt)
T pt+1 � �t = ct + qT

t
pt+1 � �t, t = 0, . . . , T,

where �t is the transaction and holding cost, consisting of the trading cost at time t + 1 and the

holding cost over period t. (The last equality follows from the cash-neutrality constraint.)

Portfolio NAV. The net asset value (NAV) of the portfolio, including the cash account, at time t

is

Vt = ct + qT
t
pt = ct.

Due to the market neutrality constraint in (5.4) we have Vt = ct, i.e., the NAV is equal to the cash

account.
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Return. The return at time t is

rt =
Vt � Vt�1

Vt�1
, t = 1, . . . , T.

We report several standard metrics based on the returns rt. The average return is

r =
1

T

TX

t=1

rt,

which we multiply by 250 to annualize. The return volatility is

 
1

T

TX

t=1

(rt � r)2
!1/2

,

which we multiply by
p
250 to annualize. The annualized Sharpe ratio is the ratio of the annualized

average return to the annualized volatility. Finally, the maximum drawdown is

max
1t1<t2T

✓
1� Vt2

Vt1

◆
,

the maximum fractional drop in value form a previous high.

Turnover. The turnover at time t is

T =
1

2

nX

i=1

|((Pt � ht)i � (Pt � ht�1)i)/Vt| =
1

2
kPt � (ht � ht�1)k1/Vt,

which we multiply by 250 to annualize. It measures the amount of trading in the portfolio [130,

Chap. 16]. For example, a turnover of 0.01 means that the average of total amount bought and total

amount sold is 1% of the total portfolio value.

Active return and risk. We define the active return as the return of the portfolio minus the

return of the market, which we take to be the S&P 500. The active risk is the standard deviation of

the active return.

Residual return and risk. Given the portfolio returns r1, r2, . . . , rT , and the corresponding

market returns rm1 , rm2 , . . . , rm
T
, we construct the linear model

rt = �rm
t

+ ✓t, t = 1, . . . , T,
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Return Volatility Sharpe ratio Turnover Drawdown

19% 12% 1.61 136 15%

Table 5.1: Metrics for portfolio of MBSAs.

Active return Active risk Residual return Residual risk Beta Information ratio

8% 20% 18% 11% 11% 1.53

Table 5.2: Comparison of portfolio of MBSAs to the market.

where �rm
t

is the return explained by the market (with � 2 Rn), and ✓t 2 Rn is the residual return

at time t. The residual risk is the standard deviation of the residual return. The mean residual

return is often referred to as the alpha of the portfolio [130] (not to be confused with the alpha of an

MBSA). The information ratio is the ratio of the portfolio alpha to the residual risk.

5.4.3 Results

Portfolio performance. The portfolio performance is summarized in table 5.1. We attain an

average annual return of 19% at an annual volatility of 12%, corresponding to a Sharpe ratio of 1.61,

with a maximum drawdown of 15% over the roughly 10-year period. The average turnover is 136,

which corresponds to a daily turnover of roughly 50%. In comparison to other stat-arb strategies in

the literature, this seems like a reasonable level of turnover [134].

Active and residual return and risk. Here we compare the MBSA strategy to the market,

represented by the S&P 500 with an initial investment of $1 and diluted with cash to attain the same

annualized risk as the MBSA strategy. Table 5.2 gives a numerical summary. The MBSA strategy

attains an annualized Sharpe ratio of 1.61 (compared to 0.66 for the market) with a residual return

(alpha) of 18% and a market beta of 11%. The information ratio is 1.53.

NAV evolution. Figure 5.1 shows the NAV of the MBSA strategy and the market, and the 250-day

half-life EWMA correlation between the two.

As seen, the MBSA strategy outperforms the market, with very low correlation, 15% over the

whole period. This suggests mixing the MBSA strategy with the market. For example, mixing 90%

of the MBSA strategy and 10% of the market yields an annualized Sharpe ratio of 1.66, slightly

better than the MBSA strategy alone.
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(a) NAV evolution.

(b) 250-day half-life EWMA correlation to market.

Figure 5.1: A comparison summary of the dynamically managed portfolio of MBSAs to the market.
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Annual performance. Here we break down the metrics reported above over the 11-year period

into the performance metrics for each year. Figure 5.2 shows the annual performance of the MBSA

strategy and the market. The MBSA strategy has positive return in each of the 11 years, whereas

the market has negative return in 2 of the 11 years. The MBSA strategy outperforms the market in

8 of the 11 years, and has more stable performance.

Finally, figure 5.3 shows the annual residual return and risk, and market beta. As seen, most of

the MBSA success is unexplained by the market.
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(a) Annual returns.

(b) Annual volatilities.

(c) Annual Sharpe ratios.

Figure 5.2: Annual portfolio performance.
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(a) Annual residual returns (alphas).

(b) Annual residual risks.

(c) Annual market betas.

Figure 5.3: Annual residual return and risk, and market beta.
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5.5 Conclusion

We have shown how to manage a dynamic basket of moving-band stat-arbs, based on a long-short

Markowitz optimization strategy. We presented an empirical study of the method on recent historical

data, showing that it can to outperform the market with low correlation.



Chapter 6

Simple and e↵ective portfolio

construction with crypto assets

6.1 Introduction

Since the introduction of cryptocurrencies in 2009 [238], the field of crypto trading has rapidly grown.

In this note we consider the problem of constructing a portfolio of assets, including a combination of

traditional financial assets such as stocks and bonds with crypto assets such as Bitcoin and Ethereum.

Our conclusion is that despite the well known extreme swings of crypto currency values, simple

standard portfolio construction methods su�ce to realize the benefits of including crypto assets in a

portfolio.

Figure 6.1 shows the normalized prices of Bitcoin (BTC), Ethereum (ETH), and the S&P 500

index (SP500) over the past six years. To the eye it reasonably seems that crypto returns are quite

di↵erent from traditional returns. Table 6.1 lists some metrics for these asset returns over the same

period, which also suggest that crypto asset returns fundamentally di↵er from traditional asset

returns. For example, ETH at one point dropped in value by a factor of almost 20⇥, while the

maximum drop in value of SP500 is only one third.

Stylized facts of crypto returns, such as extreme volatility, heavy tails, excess kurtosis, and

Table 6.1: Performance metrics for BTC, ETH, and SP500.

Metric BTC ETH SP500

Return (%) 43.3 47.0 13.7
Volatility (%) 58.1 71.6 19.5
Sharpe 0.75 0.66 0.70
Drawdown (%) 83.3 93.9 33.9

144
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Figure 6.1: Normalized prices of BTC, ETH, and SP500.

skewness, have been well documented [195, 148, 170]. Figure 6.2 shows quantile-quantile (QQ) plots

of the log returns of BTC, ETH, and SP500 over the last six years. All three return distributions have

tails that deviate significantly from the normal distribution, with the crypto asset returns exhibiting

more extreme tail behavior than the market index. The 1st and 99th return percentiles are shown in

the plots as dashed green lines; here too we see that crypto asset returns have considerably bigger

tails than the market index, even when normalized to have the same volatility.

The documented characteristics of crypto asset returns have made conventional investors hesitant

to include them in their portfolios, due to perceptions of risk and unpredictability. While asset

managers may have additional concerns, such as legislative risk and other fundamental factors like

the ongoing debate about the legitimacy of crypto as a real asset [313, 182, 181, 67], we will focus

here on the concerns related to the statistical properties of crypto asset returns.

These characteristics of crypto asset returns have also led to a wealth of research on how to

extend traditional portfolio construction methods to include crypto assets, including methods similar

to those used for traditional assets [146, 56, 59, 149], as well as more complex machine learning

driven methods [270, 160, 203, 161, 265, 270].

Despite the documented di↵erences between crypto and conventional asset returns, some authors

have argued that the two asset classes are fundamentally similar [247, Chap. 2], even though the

crypto asset returns and volatilities are much higher. We agree with this perspective. In this note

we show a simple method for constructing a portfolio of traditional and crypto assets using a risk

allocation framework, (hopefully) debunking the idea that novel and complex machine learning
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Figure 6.2: Quantile-quantile plot of log returns of BTC, ETH, and SP500.
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approaches are necessary to manage a portfolio that includes crypto assets. Based on a back-test of

the risk allocation method, we propose an even simpler portfolio construction method, reminiscent of

the traditional 60/40 stocks/bonds split, which consists of a 90/10 split of traditional and crypto

assets, followed by dynamic (time-varying) dilution with cash, to achieve a given ex-ante risk. We

refer to this simple portfolio as DD90/10.

Outline. In §6.2 we review previous and related work. We introduce in §6.3 an approach for

constructing a portfolio that combines traditional and crypto assets within a risk allocation framework.

We illustrate the performance of this method on historical data in §6.4. Finally, in §6.5 we propose

the DD90/10 portfolio allocation strategy, and show that it has performance similar to the risk

allocation strategy.

6.2 Related work

6.2.1 Stylized facts of financial return data

Stylized facts of financial return series refer to a set of empirical observations that are consistently

observed across di↵erent financial markets and asset classes. We review some of the most prominent

stylized facts for financial assets, and refer the reader to [247, Chap. 2] for a more comprehensive

overview.

Equities. Stylized facts for equity returns include the non-normal distribution of returns, char-

acterized by heavy tails and excess kurtosis [207, 58]. Another fact is volatility clustering, where

large price movements tend to be followed by additional large movements, regardless of direction.

While returns themselves are generally uncorrelated over time, the absolute or squared returns often

display strong autocorrelation, highlighting a pattern in the magnitude of fluctuations. Furthermore,

the leverage e↵ect is a notable feature, where negative returns increase future volatility to a greater

extent than positive returns of the same size. Equity return distributions have also been shown to

exhibit asymmetry between positive and negative returns [159].

Cryptocurrencies. Cryptocurrencies exhibit several patterns similar to traditional financial assets,

but with more extreme behavior [148, 119]. They are highly volatile, with large price fluctuations and

heavy-tailed return distributions. Volatility tends to cluster, with periods of high volatility followed

by more volatility. While returns show no autocorrelation in the short term, return magnitudes do

exhibit autocorrelation. Cryptocurrencies also exhibit asymmetry in returns [170].
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6.2.2 Portfolio construction

Portfolio construction involves selecting a combination of assets by balancing the trade-o↵ between

expected return and portfolio risk. Here we discuss key historical contributions to the field, along

with some recent advancements. For more extensive overviews, refer to texts such as [130, Chap. 14],

[240, Chap. 6], and the studies by [69, 176, 63, 135, 45].

Markowitz portfolio construction. Before Markowitz’s seminal work in 1952, portfolio con-

struction was largely based on heuristics and rules of thumb. Markowitz introduced a quantitative

framework for portfolio construction, where the return of a portfolio is modeled as a random variable,

and the expected return is maximized for a desired level of risk [209]. Despite its simplicity, and

having over 70 years of history, the Markowitz model remains the foundation of quantitative investing

to this day [45].

Extensions of the Markowitz model include the Black-Litterman model [33, 34, 32], fully flexible

views [226], and conditional value-at-risk (CVaR) optimization [266], to name a few. The Black-

Litterman model is a Bayesian approach to portfolio construction, where the prior distribution is

based on the equilibrium market portfolio, and the posterior distribution is updated with user-specific

views on the expected returns of the assets. Fully flexible views is a generalization of Black-Litterman,

allowing for nonlinear views on the returns. CVaR optimization replaces the variance in the Markowitz

model with the conditional value-at-risk of the portfolio, penalizing the tail risk of the portfolio, and

directly addresses the issue of a non-normal return distribution.

Machine learning based portfolio construction. Typically, portfolio construction is split into

two parts: data modelling and portfolio optimization [247, Chap. 1]. Data modelling is concerned

with predicting the expected returns and covariances of the assets, and portfolio optimization

concerns selecting a portfolio of assets that trades o↵ expected return and risk. However, with the

growing popularity of machine learning, and documented criticism of the Markowitz model [228], in

recent years several studies have proposed machine learning based portfolio construction methods as

alternatives to this traditional framework [137, 19]. In particular, it has become popular to combine

the two parts of portfolio construction into a single end-to-end machine learning model, where market

features are fed into the model, and the model outputs a trade list. The argument for this has been

that splitting portfolio construction into two parts is suboptimal, as there are uncertainties in the

return forecasts that are not accounted for in the portfolio optimization component of portfolio

construction [171, §5]. Although theoretically appealing, we have yet to see a wide-spread adoption

of these methods in practice, and the Markowitz model remains the dominant framework for portfolio

construction [45]. We refer the reader to [171, §5] for a detailed review of end-to-end machine learning

models for portfolio construction.
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Risk-based portfolio construction. Risk-based portfolio construction methods rely on estimates

of the asset return covariances, but do not require an estimate of the expected returns of the assets,

making them attractive for practitioners who do not have access to data sources for estimating

expected returns reliably. A trivial example of a risk-based portfolio construction method is the

equally weighted portfolio. Another popular portfolio is the minimum variance portfolio, which

is also the mean-variance e�cient portfolio when expected returns are equal. Other risk-based

portfolio construction methods include risk parity [263], where the risk contribution of each asset

is equal, and maximum diversification portfolios [66]. These portfolios can all be computed via

convex optimization [163, §4.4], which makes them reliable, fast, and practical [49]. These portfolio

construction methods can be implemented in just a few lines of domain specific languages for convex

optimization such as CVXPY [82].

Risk and covariance estimation. Risk-based portfolio construction methods rely on estimates

of the portfolio risk. There are in general two ways to estimate portfolio risk. The first is to use

a realized measure of the variance of the portfolio. There are many such methods, including the

exponentially weighted moving average (EWMA), methods based on mean absolute deviation or

the rolling median [115, 116], as well as autoregressive conditional heteroskedasticity (ARCH) and

generalized ARCH (GARCH) models [91, 36, 93]. The second way to estimate portfolio risk is to

leverage a covariance matrix of the asset returns. The literature on covariance estimating in finance

is vast, but probably the most popular method is to use an iterated covariance matrix [92, 18].

This method decomposes the covariance ⌃ as ⌃ = V RV , where V is a diagonal matrix with the

asset standard deviations on the diagonal and R is the correlation matrix. Typically, V and R are

estimated separately, using EWMAs with di↵erent half-lives. We will refer to this method as the

iterated EWMA (IEWMA) [163, §2.5]. It is also possible to dynamically adjust the half-lives of the

EWMAs, to account for time-varying market conditions [163].

6.2.3 Crypto trading

Several methods to managing portfolios of cryptocurrencies have been proposed, and these tend to

be separated from investment strategies proposed for traditional assets.

Diversification. Many studies have noted that the returns of cryptocurrencies are uncorrelated

with traditional assets [16, 314, 146]. This means that they can be leveraged to diversify a portfolio

of traditional assets, and thus increase the risk-adjusted return of the portfolio [146, 16].

Portfolio construction. Much of the literature on cryptocurrency trading is focused on machine

learning or deep learning [270]. In [160] an end-to-end convolutional neural network, taking in

raw price data and outputting a trade list, is proposed. A deep Q-learning portfolio management
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framework is proposed in [203]. The authors of [161] introduce a financial-model-free reinforcement

learning framework, incorporating convolutional neural networks, recurrent neural networks, and

long short-term memory models. In [265] ARIMA models, convolutional neural networks, and long

short-term memory methods are used for cryptocurrency price forecasting and multiple portfolio

construction strategies are evaluated with the forecasted prices as input. For a more detailed review

of machine learning in cryptocurrency portfolio management, see e.g., [270, §4.2].
Some crypto studies use traditional portfolio construction methods, such as the Markowitz

framework. In [146], the authors show that crypto assets can improve the performance of a mean-

variance optimized portfolio. The authors of [56] show how to implement a mean-variance optimized

portfolio of cryptocurrencies and that it outperforms an equally weighted portfolio as well as single

cryptocurrencies. The paper [120] proposes an extension of the Markowitz model, combining random

matrix theory and network measures to manage a portfolio of crypto assets. In [258] the authors

design crypto portfolios using variance-based constraints in the Black-Litterman model, to account

for estimation uncertainties.

Other studies focus on risk-based portfolio construction methods, i.e., those that do not rely on

an estimate of the expected returns of the assets. In [59] multiple risk-based portfolio construction

methods are evaluated, and the authors find that most of them outperform single cryptocurrencies

and the equally weighted portfolio. The authors of [149] find that minimizing the variance and

conditional value-at-risk of a portfolio of cryptocurrencies, yields a portfolio that outperforms the

market.

6.3 Constrained risk allocation

The most common approach to portfolio construction is to formulate the problem as a trade-o↵

between expected return and risk, as suggested by Markowitz in 1952 [209]. The main practical

challenge with this framework is that it requires estimating expected returns of the assets. These are

very di�cult to estimate and, for obvious reasons, successful estimation techniques are proprietary;

large hedge funds and asset managers have entire teams dedicated to estimating expected returns,

using data sources for which they pay large premiums [247]. Here we describe a risk allocation

approach, which does not require an estimate of the expected returns of the assets. It is based on

the idea of risk parity [263], with additional constraints on the portfolio weights and a risk limit. We

refer to this method as constrained risk allocation (CRA).

6.3.1 Constrained risk allocation problem

We consider a portfolio of n non-cash assets, plus cash. We denote the asset weights as w 2 Rn, with

w � 0, where wi is the fraction of the total portfolio value held in asset i. We let c � 0 denote the

fraction of the portfolio value held in cash, so we have 1Tw + c = 1, where 1 is the vector with all
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entries one. We refer to 1Tw as our asset exposure.

Let ⌃ denote the n ⇥ n (estimate of the) covariance matrix of the returns. Assuming cash is

risk-free, the portfolio risk is wT⌃w. (The volatility is the squareroot of this.) Inspired by the

identity

wT⌃w =
nX

i=1

wi(⌃w)i,

we define the risk contribution of asset i as wi(⌃w)i. In risk allocation we specify the fraction of

risk to be held in each asset, as the vector ⇢ 2 Rn, with ⇢ > 0 and 1T ⇢ = 1. We interpret ⇢i as the

fraction of total portfolio risk contributed by asset i. (We assume that all entries of ⇢ are positive; if

any were zero, we simply would not include that asset in the portfolio.) Thus we have

wi(⌃w)i = ⇢iw
T⌃w, i = 1, . . . , n. (6.1)

The special case ⇢ = (1/n)1 corresponds to risk parity, where all assets contribute an equal fraction

of the risk.

The CRA problem is defined as

minimize c

subject to w � 0, c � 0, 1Tw + c = 1

wi(⌃w)i = ⇢iwT⌃w, i = 1, . . . , n

wT⌃w  �2, Fw  g,

(6.2)

where w 2 Rn and c 2 R are the variables, �2 is the maximum allowed risk, and F 2 Rm⇥n and

g 2 Rm describe constraints on the portfolio. In words: We choose the portfolio to minimize cash

holdings (or equivalently, maximize asset exposure), subject to a given risk allocation, a total risk

limit, and some additional constraints on the weights.

We will assume that g > 0 and F � 0 (elementwise), with each row of F nonzero. We will soon

see that this implies the CRA problem (6.2) always has a unique solution. The weight constraints

can be used to enforce a maximum weight on each asset, or a maximum weight on a subset of assets,

e.g., crypto assets.

6.3.2 Solution via convex optimization

The CRA problem (6.2) is not itself a convex optimization problem, but it can be solved e�ciently

via convex optimization. We first consider the risk allocation constraints (6.1) alone, together with

w � 0. It can be shown that w satisfies these constraints if and only if it has the form

w = ↵x?,



CHAPTER 6. SIMPLE AND EFFECTIVE PORTFOLIO CONSTRUCTIONWITH CRYPTOASSETS152

where ↵ � 0 and x? 2 Rn is the unique solution of the convex optimization problem

minimize (1/2)xT⌃x�
nX

i=1

⇢i log xi, (6.3)

with variable x 2 Rn (and implicit constraint x > 0). See, e.g., [52, §17]. Thus the set of weights

that satisfy the risk allocation constraints is a ray, with a direction that can be found by solving a

convex optimization problem.

Now we take this very specific form for w and substitute it back into the original CRA problem

(6.2), dropping the risk allocation constraints and w � 0 since they are automatically satisfied. This

gives us the problem

minimize c

subject to ↵ � 0, c � 0, ↵1Tx? + c = 1

↵2(x?)T⌃x?  �2, ↵Fx?  g,

with scalar variables ↵ and c. Note that the quantities 1Tx?, (x?)T⌃x?, and Fx? are constants in

this problem.

We can solve this simple problem analytically. Minimizing c is the same as maximizing ↵. Along

with ↵ � 0, all constraints on ↵ are (positive) upper limits:

↵  1

1Tx?
, ↵  �

((x?)T⌃x?)1/2
, ↵  gi

(Fx?)i
, i = 1, . . . ,m.

(Each of the denominators is positive due to our assumptions and x? > 0.) It follows that the solution

is

↵? = min

(
1

1Tx?
,

�

((x?)T⌃x?)1/2
,

gi
(Fx?)i

, i = 1, . . . ,m

)
. (6.4)

Roughly speaking: Scale the unconstrained risk allocation weights as large as possible with all

constraints holding.

Summary. The two step solution procedure is summarized as follows:

1. Solve the optimization problem (6.3) to obtain x?.

2. The unique solution of the CRA problem is then given by w? = ↵?x? where ↵? is given by (6.4).

We note that Feng and Palomar have suggested a more sophisticated formulation of the CRA

problem, in which the risk allocations need only hold approximately [105, 309], [247, Chap. 11]. This

formulation can be approximately solved by solving a sequence of convex problems. Our simple

formulation is, however, good enough for us to make our main point.
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Table 6.2: Performance metrics for the six assets.

Metric BTC ETH Cnsmr Manuf HiTec Hlth

Return (%) 43.5 47.1 14.1 11.4 20.7 10.8
Volatility (%) 58.1 71.6 19.3 20.5 23.9 18.0
Sharpe 0.73 0.60 0.76 0.58 0.90 0.62
Drawdown (%) 83.3 93.9 28.5 42.7 35.4 26.8

Variation. We can modify the way ↵? is computed in (6.4). Instead of estimating the standard

deviation of the unconstrained risk allocation portfolio x? as
�
(x?)T⌃x?

�1/2
, we compute the realized

return trajectory of the portfolio x?, i.e., (x?)T rt, t = 1, 2, . . ., where rt is the vector of asset returns

at time t. We then compute an estimate of the standard deviation of the portfolio return trajectory,

using, e.g., a EWMA. Thus to compute the scaling (which sets the cash dilution) we directly estimate

the standard deviation of the return trajectory with the unconstrained risk allocation weights, rather

than find it from our estimated covariance matrix (which we use to compute the risk allocation

weights x? in step 1.) We have found that leads to a modest but significant improvement in portfolio

performance.

6.4 CRA results

6.4.1 Data and experimental setup

Data. We consider daily close prices of two crypto assets, BTC and ETH, with data from LSEG

Data and Analytics. We also consider four daily traded industry portfolios: consumer goods and

services, manufacturing and utilities, technology and communications, as well as healthcare, medical

equipment, and drugs; these were obtained from Kenneth French’s data library [110]. The data spans

from September 8th, 2017, to September 22nd, 2024, for a total of 2565 days, or 1729 trading days.

(Although crypto assets are traded every day, we rebalance our portfolios only on market trading

days; we do, however, realize gains and losses on crypto assets on weekends and holidays.) Figure 6.3

shows the normalized price evolution of the six assets, and table 6.2 lists some metrics for them. The

data and code to reproduce the results are available at

https://github.com/cvxgrp/crypto_portfolio.

Risk model. We estimate the covariance matrix of the assets using an iterated EWMA, described

in detail in [163, §2.5]. We use a 63-day half-life for the volatility estimate and a 125-day half-life for

the correlation estimate. The estimated volatilities of the six assets are shown in figure 6.4. Two

examples (from di↵erent time-periods) of the estimated correlation matrix are shown in figure 6.5.

https://github.com/cvxgrp/crypto_portfolio
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Figure 6.3: Normalized prices of BTC, ETH, and four industry portfolios.

Figure 6.4: Estimated annualized volatilities of the six assets.
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(a) March 1st, 2020. (b) May 1st, 2023.

Figure 6.5: Estimated correlation matrices on two di↵erent dates.

Simulation and parameters. We simulate three portfolios.

• Industries contains only the four industry portfolios and cash.

• Crypto contains only the two crypto assets and cash.

• Combined contains all six assets and cash.

We rebalance the portfolios every trading day, using risk parity. We impose a 10% annualized risk

limit on the portfolio, i.e., � = 0.1
p
D, where D = 250 is the number of trading days in a year. To

estimate the risk of the unconstrained risk parity portfolio x?, we use a 10-day half-life EWMA of the

portfolio return. We also impose a 10% maximum weight constraint on crypto assets, i.e., for BTC

and ETH combined. These limits were chosen as reasonable values that one might use in practice;

the results are not sensitive to these choices.

6.4.2 Metrics

We describe the metrics used to evaluate the performance of the portfolios over the time interval

t = 1, . . . , T .

Return. The (realized) return of the portfolio at time t is given by

wT

t
rt,
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Table 6.3: Portfolio performance metrics.

Metric Industries Crypto Combined

Return (%) 6.0 4.5 8.2
Volatility (%) 8.2 6.0 8.2
Sharpe 0.73 0.75 1.00
Drawdown (%) 12.5 15.9 19.6

where rt and wt are the vector of (realized) asset returns and the portfolio weights at time t,

respectively. The annualized (realized) return is given by

r̄ =
D

T

TX

t=1

wT

t
rt.

Volatility. The (realized) annualized volatility of the portfolio is given by

 
D

T

TX

t=1

(rt � r)2
!1/2

.

Sharpe ratio. The Sharpe ratio is the ratio of the annualized return to the annualized volatility.

Drawdown. Let Vt denote the portfolio value in time period t, starting from V1 = 1, with returns

compounded or re-invested. These are found from the recursion Vt+1 = (1+wT

t
rt)Vt, t = 1, . . . , T �1.

The (maximum) drawdown of the portfolio is defined as

max
1t1<t2T

✓
1� Vt2

Vt1

◆
,

i.e., the maximum fractional drop in value from a previous high.

6.4.3 Results

Portfolio weights. The portfolio weights of the three portfolios are shown in figure 6.6. As

expected, the crypto portfolio holds mostly cash, due to the 10% crypto limit. The industry and

combined portfolios have more diversified weights, varying over time. As expected these portfolios

hold a lot of cash during the turbulent 2020 period. On average, the industry portfolio holds 25%

cash, the crypto portfolio 90% cash, and the combined portfolio 33% cash.

Performance. Figure 6.7 shows the value of the three portfolios over time, normalized to one at

the start of the simulation. (SR denotes Sharpe ratio.) The aggregate performance of the three

portfolios is shown in table 6.3. Including crypto assets in the portfolio clearly gives a noticeable
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(a) Industry portfolio.

(b) Crypto portfolio.

(c) Combined portfolio.

Figure 6.6: Portfolio weights of the three portfolios. The cash weight is shown as uncolored.
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Figure 6.7: Portfolio values of the three portfolios.

boost, despite allocating less than 10% of the portfolio to them. The combined portfolio has a higher

return and Sharpe ratio than the industry portfolio, while having similar volatility and drawdown.

To get a better understanding of the performance di↵erences, figure 6.8 shows the return, volatility,

and Sharpe ratio of the three portfolios over each year of the simulation.



CHAPTER 6. SIMPLE AND EFFECTIVE PORTFOLIO CONSTRUCTIONWITH CRYPTOASSETS159

Figure 6.8: Annual performance metrics of the three portfolios.
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Table 6.4: Shapley attributions by asset category.

Metric Cnsmr Manuf HiTec Hlth Crypto Total

Return (%) 1.8 0.7 2.5 0.8 2.5 8.2
Volatility (%) 1.8 1.8 2.0 1.9 0.7 8.2
Sharpe 0.20 0.06 0.26 0.08 0.40 1.0
Drawdown (%) 3.3 2.4 3.2 3.5 7.3 19.6

Figure 6.9: Relative weights of the combined portfolio.

6.4.4 Shapley attributions

We would like to attribute the performance of the portfolio to the di↵erent asset classes. Shapley values

account for each assets’ contribution to the portfolio, ensuring a fair allocation. They are uniquely

characterized by satisfying a collection of desirable properties, including fairness, monotonicity, and

full attribution [278, 153, 315, 111, 246, 231]. We will now look at the Shapley attributions to each

industry and to crypto as a whole, for the combined portfolio. The Shapley attributions of the

di↵erent asset classes for the combined portfolio are shown in table 6.4. Crypto assets have the

highest attribution to return and Sharpe. All assets other than crypto have around a 2% contribution

to volatility; crypto has a noticeably lower volatility contribution. Crypto assets have the highest

contribution to drawdown.

6.5 Dynamically diluted 90/10 portfolio

Figure 6.9 shows the relative non-cash weights, i.e., w/1Tw for the combined portfolio over time.

We see that, apart from 2020, the relative weights are relatively stable and evenly distributed with

about 10% in crypto assets (equally split between BTC and ETH), and 90% roughly equally split

between the four industry portfolios. This motivates an even simpler portfolio construction method,

akin to the popular 60/40 stocks/bonds allocation.
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Figure 6.10: Annualized volatility estimates of the 90/10 portfolio.

Table 6.5: Performance metrics DD90/10 and CRA.

Metric DD90/10 (EWMA) DD90/10 (GARCH) CRA

Return (%) 10.4 10.1 8.2
Volatility (%) 9.8 9.7 8.2
Sharpe 1.06 1.04 1.00
Drawdown (%) 19.9 19.7 19.6

• 90/10 portfolio. Construct a portfolio consisting of 90% equities (e.g., the four industries with

equal weights) and 10% crypto (e.g., equally split between BTC and ETH).

• Dynamic cash dilution. Based on an estimate of the recent volatility of the 90/10 portfolio,

dilute the 90/10 portfolio with cash to achieve the target risk � and respect weight limits. We

refer to this portfolio as the dynamically diluted 90/10 (DD90/10) portfolio.

6.5.1 DD90/10 results

Volatility estimators. We evaluate the performance of the DD90/10 portfolio using two di↵erent

volatility estimators: a 10-day half-life EWMA, and a GARCH(1,1) model refitted every day on

the last 250 days of data, using the arch package in Python [283]. (We tried several other volatility

estimators; all gave similar results.) The volatility estimates of the 90/10 portfolio are shown in

figure 6.10.

Weights. The weights of the DD90/10 portfolios are shown in figure 6.11. The weights are quite

similar, with the GARCH estimator being noticeably more reactive during some periods.

Performance. The performance of the DD90/10, compared to the (combined) CRA portfolio, is

shown in table 6.5. Figure 6.12 shows the value of the three portfolios over time.
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(a) EWMA volatility estimator.

(b) GARCH volatility estimator.

Figure 6.11: Portfolio weights of the DD90/10 portfolios with EWMA and GARCH volatility
estimators.
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Figure 6.12: Portfolio values of the DD90/10 and CRA portfolios.

6.6 Conclusions

We have illustrated that, despite the documented extreme behaviors of crypto assets, simple traditional

portfolio construction techniques can be used to include them in a diversified portfolio. We show this

using two standard portfolio construction methods, one based on risk parity, and the other a fixed

set of relative weights, with each one dynamically diluted with cash to achieve a target ex-ante risk.

The addition of even a modest crypto weight of 10% increases the return and Sharpe ratio of the

portfolio significantly, without significantly increasing volatility or drawdown.



Appendix A

Supplementary material for

chapter 3

A.1 Coding tricks

The problem described in §3.4.1 can essentially be typed directly into a DSL such as CVXPY, with

very few changes. In this section we mention a few simple tricks in formulating the problem (for a

DSL) that lead to better performance.

Quadratic forms versus Euclidean norms. Traditional portfolio construction optimization

formulations use quadratic forms such as wT⌃w. Modern convex optimization solvers can directly

handle the Euclidean norm without squaring to obtain a quadratic form. Using norm expressions

instead of quadratic forms is often more natural, and has better numerical properties. For example a

risk limit, traditionally expressed using a quadratic form as

wT⌃w  (�tar)2,

is better expressed using a Euclidean norm as

kLTwk2  �tar,

where L is the Cholesky factor of ⌃, i.e., LLT = ⌃, with L lower triangular with positive diagonal

entries.

Exploiting the factor model. To exploit the factor model, it is critical to never form the

covariance matrix ⌃ = F⌃fFT + D. The first disadvantage of doing this is that we have to
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(needlessly) store an n ⇥ n matrix, which can be a challenge when n is on the order of tens of

thousands. In addition, the solver will be slowed by a dramatic factor as mentioned in §3.3.3.
To exploit the factor model, we introduce the data matrix F̃ = FL, where L is the Cholesky

factor of ⌃f, so F̃ F̃T = F⌃fFT . The portfolio variance is

�2 = wT F̃ F̃Tw + wTDw = kF̃Twk22 + kD1/2wk22,

so the risk can be expressed using Euclidean norms as

� =
���
⇣
kF̃Twk2, kD1/2wk2

⌘���
2
.

In this expression, the outer norm is of a 2-vector; the inner lefthand norm is of a k-vector, and the

inner righthand norm is of an n-vector. Here we should be careful to express D as a diagonal matrix,

or to express D1/2w as the elementwise (Hadamard) product of two vectors.
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A.2 CVXPY code listing

We provide a reference implementation for the problem described in §3.4. This implementation is

not optimized for performance, contains no error checking, and is provided for illustrative purposes

only. For a more performant and robust implementation, we refer the reader to the cvxmarkowitz

package [132]. Below, we assume that the data and parameters are already defined in corresponding

data structures. The complete code for the reference implementation is available at

https://github.com/cvxgrp/markowitz-reference.

1 import cvxpy as cp

2

3 w, c = cp.Variable(data.n_assets), cp.Variable()

4

5 z = w - data.w_prev

6 T = cp.norm1(z) / 2

7 L = cp.norm1(w)

8

9 # worst-case (robust) return

10 factor_return = (data.F @ data.factor_mean).T @ w

11 idio_return = data.idio_mean @ w

12 mean_return = factor_return + idio_return + data.risk_free * c

13 return_uncertainty = param.rho_mean @ cp.abs(w)

14 return_wc = mean_return - return_uncertainty

15

16 # worst-case (robust) risk

17 factor_risk = cp.norm2((data.F @ data.factor_covariance_chol).T @ w)

18 idio_risk = cp.norm2(cp.multiply(data.idio_volas, w))

19 risk = cp.norm2(cp.hstack([factor_risk, idio_risk]))

20 risk_uncertainty = param.rho_covariance**0.5 * data.volas @ cp.abs(w)

21 risk_wc = cp.norm2(cp.hstack([risk, risk_uncertainty]))

22

23 asset_holding_cost = data.kappa_short @ cp.pos(-w)

24 cash_holding_cost = data.kappa_borrow * cp.pos(-c)

25 holding_cost = asset_holding_cost + cash_holding_cost

26

27 spread_cost = data.kappa_spread @ cp.abs(z)

28 impact_cost = data.kappa_impact @ cp.power(cp.abs(z), 3 / 2)

29 trading_cost = spread_cost + impact_cost

https://github.com/cvxgrp/cvxmarkowitz
https://github.com/cvxgrp/markowitz-reference
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30

31 objective = (

32 return_wc

33 - param.gamma_hold * holding_cost

34 - param.gamma_trade * trading_cost

35 )

36

37 constraints = [

38 cp.sum(w) + c == 1,

39 param.w_min <= w, w <= param.w_max,

40 L <= param.L_tar,

41 param.c_min <= c, c <= param.c_max,

42 param.z_min <= z, z <= param.z_max,

43 T <= param.T_tar,

44 risk_wc <= param.risk_target,

45 ]

46

47 problem = cp.Problem(cp.Maximize(objective), constraints)

48 problem.solve()

We start by importing the CVXPY package in line 1 and define the variables of the problem in

line 3. The variable w is the vector of asset weights, and c is the cash weight. We then define the

trade vector z, turnover T, and leverage L in lines 5–7 to simplify the notation in the remainder of

the code.

In the next block we first define the mean return in lines 10–12, taking into account the factor

and idiosyncratic returns, as well as the risk-free rate. We then define the uncertainty in the mean

return in line 13, which then reduces the mean return to the worst-case return in line 14.

Similarly, the robust risk is obtained in lines 17–21 by first defining the factor and idiosyncratic

risk components, which are combined to the portfolio risk. The uncertainty in the risk, which depends

on the asset volatilities, is combined with the portfolio risk to obtain the worst-case risk in line 21.

The holding cost is defined in lines 23–25, followed by the trading cost in lines 27–29.

We form the objective function in lines 31–35 by combining the worst-case return with the holding

and trading costs, weighted by the corresponding parameters. The constraints are collected in lines

37–45, starting with the budget constraint, followed by the holding and trading constraints, and

ending with the risk constraint.

Finally, the problem is defined in line 47, combining the objective and constraints. It is solved in

line 48 by simply calling the .solve() method on the problem instance, with a suitable solver being

chosen automatically.
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In only 48 lines of code we have defined and solved the Markowitz problem with all the constraints

and objectives described in §3.4. This underlines the power of using a DSL such as CVXPY to

specify convex optimization problems in a way that closely follows the mathematical formulation.

Parameters. Using parameters can provide both a convenient way to specify the problem, as well

as a way to reduce the overhead of CVXPY when solving multiple instances. To obtain this speedup

requires some restrictions on the problem formulation. For a precise definition we refer the reader

to [1]. Here we only mention that we require expressions to additionally be linear, or a�ne, in the

parameters. For example, we can use CVXPY parameters to easily and quickly change the mean

return by writing to the the .value attribute of the mean and risk_free parameters.

1 mean = cp.Parameter(n_assets)

2 risk_free = cp.Parameter()

3

4 mean_return = w @ mean + risk_free * c

In some cases, it is necessary to reformulate the problem to satisfy the additional restrictions

required to obtain the speedup, e.g., by introducing auxiliary variables. For convenience, we provide

a parametrized implementation of the Markowitz problem in the code repository, where these

reformulations have already been carried out.
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